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Abstract

This project documents the estimator design, proposed
for the attitude control subsystem of Rømer. Rømer re-
quires fine pointing for observing stellar oscillations in
nearby stars.
A detailed noise model of the Terma NEMO star tracker
is derived, including optical distortion, centroiding er-
rors and noise equivalent angle errors. In addition a
noise model of the QRS11Pro gyroscope, and the model
of the kinematics and dynamics of Rømer are derived.
Several Kalman filters are investigated, of which two
are selected. A multi-rate Kalman filter and a steady-
state Kalman filter. The multi-rate has the advantage
of gyro bias estimation and10Hz estimate availability.
The steady-state filter requires less computation.
Algorithms for handling the delay of the attitude mea-
surement are derived, of which the update correction
algorithm is proposed. The algorithm analytically cor-
rects for the propagated error, due to delays, when a
measurement is received and incorporated in the filter.
The attitude model, noise models, and estimators are
implemented in SIMULINK , and the error in pitch, yaw,
and roll is investigated. The results are compared to the
system requirements of the ACS. The results prove that
the errors of the estimates are well within the require-
ments. The estimates of the steady-state Kalman filter
used in fine mode have RMS values in the magnitude
of arc seconds, while the requirements are in the mag-
nitude of arc minutes.
It is concluded that the estimators are applicable for the
Rømer ACS.
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This thesis is written by Dan Bhanderi, Group 1033, at Aalborg University (AAU),
Denmark from January 26th 2001 to June 7th 2001.

The project is aimed for the attitude control team of the Danish Rømer satellite.

Figures and tables are numbered successively within each chapter, e.g. Figure 5.7 is the
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in this project.
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Abbreviations, Definitions, and Symbols

The following abbreviations, definitions, and symbols are used in the report.

Abbreviations

A/D Analog to Digital
ACS Attitude Control System
CCD Charged Coupled Device
CHU Camera Head Unit
CoG Center of Gravity
CoM Center of Mass
DPU Data Processing Unit
ECI Earth Centered Inertial
FOV Field of View
MONS Measuring Oscillations in Nearby Stars
NEA Noise Equivalent Angle
PSD Power Spectrum Density
RMS Root Mean Square
RSR Rømer Standard Reference
RSS Root Sum Square
SCB Spacecraft Body



Definitions

Vectors are denoted with lower case bold:v
The elements of vectorvi are denotedvi;1, vi;2, etc.
The direction of the vectorv is represented by the unit vector in that direction denoted as:v̂

The length of vectorv is denoted as:jvj

The estimate of vectorv is denoted as:̂v1

The working point of vectorv is denoted as:�v
The small signal of vectorv is denoted as:~v
Matrices are denoted with uppercase bold:M

The element of theith row andjth column of matrixM is denoted as:M i;j

Thei by i identity matrix is denoted as:1i�i
Thei by j zero matrix is denoted as:0i�j
Cross product matrices are denoted as:S(v)

The transposed is denoted with a superscript T:MT

The rotation from frameb to frames is represented by a rotation matrix as:As
b

Quaternions are denoted as:q
The scalar part of a quaternionq is denoted as:q4
The vector/complex part of a quaternionq is denoted as:q1:3
The complex conjugated ofq is denoted with an asterisk:q�

Vectorv in frameb is denoted as:vb

The time derivative of a vectorv in frameb, given in frames is denoted as:
�
_vb
�s

Functions resulting in a vector are denoted with lower case bold:sin(v)

Functions returning a matrix values are denoted in upper case bold:S(v)

Parenthesis(�) are used to enclose function parameters or dependencies as:f (x; t)

The attitude matrix representing the rotationq is denoted as:A (q)

The a priori value of a vectorv is denoted as:v�

1The^ operator is used for both unit vector and estimates to maintain notational agreement. The
function of the operator should be clear by the context.



Symbols

ai Acceleration of particle
dca Centroiding algorithm error period
dopt Residual optical error period
F Linearized continuous system state matrix
f Focal length
f Non-linear system function
G Linearized continuous system input matrix
H Output matrix
h Non-linear system output function
Hg Rate update system output matrix
J Moment of inertia
K Kalman gain
ksf Gyro scale factor
K1 Steady-state Kalman gain
l Angular momentum

mcut Magnitude cut-off level
mcut,high Magnitude cut-off level in high rate level
mcut,low Magnitude cut-off level in low rate level
mcut,mid Magnitude cut-off level in medium rate level
m Angular momentum of wheels
mi Mass of particle
na Number of stars in the FOV
nctrl Control torque
next Sum of external forces
npixels Number of pixels per axis on the CCD
ns Number of detectable stars in the FOV
P State estimate covariance
pca Centroiding algorithm error peak
popt Residual optical error peak
p� Perturbed projection factor
P1 Steady-state estimate covariance



Q System model noise strength
q True attitude of the satellite
qm Measured attitude
qst Attitude of star tracker
q� Attitude estimation error
q�st

Attitude error of star tracker measurement
R System measurement noise strength
r̂g Gyro input axis
ri Position of particle
r̂m Intended input axis
rStari Direction to thei’th star on the CCD
sMeasi Cartesian measured direction vector to the stars in the FOV
sTruei Cartesian true direction vector to the stars in the FOV
t Time
texp Camera exposure time
u System input
ug Gyro voltage output
v System measurement noise
vi Velocity of particle
w System model noise
wdrift Gyro drift noise
wg Gyro white noise
x System state

xCCD,yCCD,zCCD Axes of the CCD frame
xECI,yECI,zECI Axes of the ECI frame
xg,yg,zg Axes of the gyro frame

xRSR,yRSR,zRSR Axes of the RSR frame
xSCB,ySCB,zSCB Axes of the SCB frame

z System measurement vector
�FOV Angular size of square FOV
� Gyro bias
�m Measured gyro bias
�align Gyro alignment error
�bias Gyro bias
�cai Centroiding error
�chrom Chromatic aberration error
�drift Gyro drift
�neai Error of noise equivalent angle
�opti Residual optical error
�RMS 3-sigma RMS value of sinusoidal error
�sf,�0sf Scale factor errors



� Discrete system input matrix

 Matrix of kinematic equation
! True angular rate of the satellite

!Earth Angular rate of the Earth
!g Gyro measurement angular rate magnitude
!g Gyro measurement angular rate

!low,mid Low to medium rate level threshold
!m Measured angular rate
!max Worst case angular rate of stars on the CCD
!mid,high Medium to high rate level threshold
!st Angular rate of star tracker
!� Rate estimation error
!� Horizontal and vertical angular rate of stars on the given in the

CCD frame
� Roll
� Discrete system state matrix
 Yaw

�FOVi Angular distance to detectable stars in the FOV given in the ECI
frame

�0FOVi Angular distance to all stars in the FOV given in the ECI frame
�Mi

Angular distance to stars after vertical and horizontal modulo
shifting

�Measi Measured angular distance to detectable stars in the FOV in the
CCD frame

�Pi Angular distance to stars after vertical and horizontal rotation
�Stari Angular distance to detectable stars in the FOV given in the CCD

frame
�x Reduced state vector
�z Reduced measurement vector
�ca 1-sigma value of the centroiding algorithm error
�drift Gyro drift deviation
�g Gyro white noise deviation
�st 1-sigma value of the NEA

�st,high 1-sigma value of the NEA in high rate level
�st,low 1-sigma value of the NEA in low rate level
�st,mid 1-sigma value of the NEA in medium rate level
� Pitch
�erri Single angular direction error
�Measi Measured single angular direction to the stars on the CCD
�Stari Single angular direction to the stars on the CCD
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Chapter 1
Introduction

Following the successful mission of The Ørsted Satellite, Denmark is currently devel-
oping a new satellite named Rømer.

Rømer’s main payload is the MONS (Measuring Oscillations in Nearby Stars) telescope,
which will measure stellar oscillation. From these measurements improved stellar mod-
els can be achieved. This project aims to find an attitude estimator Rømer.

1.1 Project Frame

Aalborg University (AAU) is in cooperation with The Danish Technical University re-
sponsible for the development of the attitude control system (ACS). The ACS has two
main parts:

� Attitude Estimation

� Attitude Control

The attitude estimation algorithm provides an estimate of the satellite’s current attitude
to the controller. The controller uses this information to acquire inertial pointing of the
satellite, which is necessary in order to point the MONS telescope towards a target star.

This project is concerned only with the attitude estimation part of the Rømer ACS.

21



22 Introduction

1.2 Initial Problems

This project spawns from the need of an attitude estimator for Rømer. An estimation
algorithm must be chosen, and an implementation provided in SIMULINK , which can be
used in conjunction with the ACS simulation. In order to demonstrate the functionality
of the attitude determination algorithm, sensors must be modeled with all relevant noise
factors.

It is the goal of the attitude estimator to minimize the error between the true attitude and
the noise inflicted attitude, acquired from sensors. In addition it is known that delays
in sensor hardware requires an analysis of synchronization problems. This lead to the
problem formulation of this project:

The goal of this project is to develop an attitude estimator, to be used with the
ACS of Rømer. The algorithm must be implemented in SIMULINK , for use
with the ACS simulation. The simulation must include a detailed modeling of
the sensor hardware intended for Rømer. The performance of the algorithm
must be within the requirements of the attitude controller. In addition it is of
interest to investigate the feasibility of performance, and choose an algorithm
through a trade-off between performance and complexity of the algorithm. The
delay in sensor hardware must be analyzed, and handled appropriately.

1.3 Solution Strategy

The attitude estimator algorithm and simulation model, is acquired through an investi-
gation in the following areas:

� Analysis of sensor hardware intended for Rømer.

� Noise modeling and SIMULINK implementation of sensor hardware.

� Analysis of different estimator designs.

� Trade-off between performance and complexity of estimator.

� Derivation of synchronization algorithm.

� Implementation of algorithm in SIMULINK .

� Performance verification through simulation.



Part I

System
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Chapter 2
System Description

This chapter describes the Rømer system components, and the requirements to the ACS
subsystem. A brief summary of the mission is given in the following.

2.1 Rømer Mission

The mission of Rømer originally contained to payloads, which were the MONS Tele-
scope and the Micro Ballerina WATCH instruments. However it was chosen to focus on
a single payload, hence the Micro Ballerina payload was discarded.

The satellite will be launched into the Molniya Orbit, which is an elliptical orbit with an
apogee height of39867km and perigee height of500km.

The MONS Telescope is to be pointed at a number of target stars, and observe their
oscillations. This data can be used to study the structure and evolution of stars, with
more detail than has been possible so far.

The satellite is expected to be launched in the first half of 2004.

2.2 Hardware

Figure 2.1 shows the Rømer Satellite seen from the nominally sunlit side. The Sun
Protection Lid, protects the MONS Telescope from sunlight. Solar panels are mounted
on the two sides facing the Sun, in order to supply the power subsystem with power. The
Field Monitor, is part of the MONS mission equipment, and supplies data necessary for
analyzing the data from the MONS Telescope.

25
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Solar Panels

Sun Protection Lid

Star Tracker 1Field Monitor

Figure 2.1: Sunlit side of Rømer, [DSRI, 2001].

MONS Telescope

Star Tracker 1

Sun Protection Lid

Field Monitor

Figure 2.2: Shadow side of Rømer, [DSRI, 2001].
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In Figure 2.2 Rømer is seen from the opposite side, the shadow side. The MONS tele-
scope is revealed, mounted by the Sun Protection Lid.

At the opposite corner of the Field of View Camera, a star tracker placed, which is used
for inertial attitude measurements, which is seen in Figures 2.1 and 2.2. A second star
tracker is facing the opposite direction, visible in Figure 2.3, which reveals the inside of
Rømer.

Figure 2.3 shows the four momentum wheels inside the Rømer, which are mounted in
a tetrahedron configuration. This configuration allows the system to survive a single
failure of a wheel. On each of the four wheels, a gyro is mounted, for measuring the
angular velocity of the satellite.

and Gyros

Star Tracker 2

Star Tracker 1

Batteries

Momentum Wheels
Electronics

Field Monitor

Figure 2.3: Inside view of Rømer, [DSRI, 2001].

In addition to the momentum wheels, magnetic coils are used as magnetorquers. These
are used as for momentum unloading of the wheels, keeping them at nominal velocities.
Sun sensors are used as secondary sensing devices, which can be used in the absence of
star tracker measurements.

It is intended that only the star trackers and rate gyros are used in the fine pointing mode
of Rømer, hence the estimator of this project will focus on the use of these two hardware
arrays.

An exploded view of Rømer can be found in Annex I. The annex also contains the
physical dimensions and mass properties of Rømer. In addition the electrical layout of
the satellite is given. Note in the electrical layout (Figure I.4), that the calculation of the
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attitude from the CHU images, is executed on the CDH, and not on separate DPUs.

Since this project is mainly concerned with the star trackers and gyros used in the atti-
tude estimator, hardware descriptions of these are given in the following.

Star Tracker

Star trackers are used to acquire a measurement of attitude. This is done by tracking
the stars in the camera’s field of view (FOV). By identifying the stars in the FOV, the
boresight of the camera is known, and thereby the attitude of the object, on which the
star tracker is mounted, can be determined.

Figure 2.4 is an image of a star tracker from Terma . The star tracker has two main parts.
The camera head unit (CHU) and the data processing unit (DPU). The star tracker used
on Rømer is the NEMO star tracker from Terma. The data sheet of the star tracker is
enclosed as Annex II.

Figure 2.4: Image of star tracker hardware which consists of a CHU (left) and a DPU
(right).

It is the purpose of the CHU to provide a digitized picture of the FOV, so the DPU can
process the image in order to find the attitude. The CDU uses a lens to project the FOV
onto a charged coupled device (CCD). In order to protect the lens from stray light, e.g.
from the Sun or Earth, a baffle is mounted on top of the lens.

The output of the CCD is an analog signal which is converted by an A/D converter and
sent to the DPU for image processing.

The DPU uses pattern recognition in order to identify the stars in the image. The stars
are matched using a set of parameters, which have been pre-calculated for a selected
set of stars stored in an integrated star catalogue. Upon calculating the parameters for
the stars in the image, the star catalogue must return a star in the catalogue which has
the same parameters. There should be only one solution in the star catalogue. Once the
stars in the FOV are recognized, the star tracker uses these stars to track the attitude.
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The parameters used in the star catalogue depend on the algorithm used for the pattern
recognition. One set of parameters could include the distances and angular separation
to the two brightest adjacent stars. It is important that the algorithm is robust to missing
or extra stars in the FOV.

When a star is projected onto the CCD, a coordinate set of the location on the CCD
can be obtained. If the star is focused on a single pixel, the coordinate set is quantized
by the number of pixels on the CCD. However, if the star is slightly defocused, the
light will affect several pixels within a certain radius. Using a centroid algorithm on
the defocused image, will allow the calculation of a coordinate set, with a resolution in
the sub-pixel range. This means that by defocusing the picture, the star location on the
CCD, is calculated with a precision that lies within a fraction of a pixel.

Gyro

Gyros are used to measure the angular velocity about a given axis, named the input
axis of the gyro. In order to measure a three dimensional angular velocity of Rømer, a
minimum of three gyros are required. The gyros used are rate sensing devices, which
measure the angular velocity, not to be confused with rate integrating gyros, which
measure angular displacement.

Figure 2.5 shows the QRS11Pro gyro from Systron, used on Rømer. The data sheet of
the rate gyro is enclosed as Annex III.

Figure 2.5: The QRS11Pro gyro used on Rømer, [SYSTRON, 2001].

The QRS11Pro gyro uses piezoelectric quartz for measuring rotational motion about
the input axis. The quartz is shaped as a dual headed fork. The vibration of one end of
the fork makes angular motion measurable at the other end, due to the Coriolis effect,
[SYSTRON, 2001].
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The gyro is supplied with an A/D converter. The external electronics of the gyro, acts
as a2Hz filter on the measurement and the converter quantizes the value with a 12 bit
resolution.



Chapter 3
System Definitions

This chapter describes the pre-definitions of the system. This includes definition of
operating modes and coordinate systems used in the estimator.

3.1 Coordinate Systems

The ACS points the satellite at a inertial fixed star, using sensors on the spacecraft. The
estimator must supply the controller with an estimate of the rotation from the space-
craft body wrt. a star fixed frame. The geometry of the satellite is given in the Rømer
Reference Frame. Hence three coordinate systems are defined:

� Earth Centered Inertial (ECI) Coordinate System

� Spacecraft Body (SCB) Coordinate System

� Rømer Standard Reference (RSR) Coordinate System

The coordinate systems are defined in the following two sections.

ECI Coordinate System

The ECI coordinate system is the inertial frame. It is star fixed, and the orientation of
the spacecraft is controlled wrt. to this frame. The frame is shown in Figure 3.1.

The ECI coordinate system consists of thexECI, yECI, andzECI axes. The origin is at the
geocenter of the Earth. ThexECIyECI plane coincide with the equatorial plane of Earth.
ThexECI axis is in the direction of the Sun at vernal equinox. ThezECI axis points
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zECI

Vernal Equinox

Earth Center

yECI

xECI

Figure 3.1: Definition of the Earth Centered Inertial Coordinate System.

towards the North Pole, and is a normal to thexECIyECI plane. TheyECI axis completes
the right-handed system.

SCB Coordinate System

The SCB coordinate system is used for attitude control. The coordinate system consists
of thexSCB, ySCB, andzSCB axes. It is centered at the CoM of the satellite, and the axes
are aligned with the satellite’s principal axes. This definition simplifies the description
of the satellite dynamics.

RSR Coordinate System

The RSR frame is used for the geometry of the satellite. All equipment locations are
given in this frame. The origin of the frame is at the center of the adapter ring. The
adapter ring is located at the bottom of the satellite, and is used for mounting the satellite
on the launcher spacecraft. The coordinate system consists of thexRSR, yRSR, and the
zRSR axes. ThexRSR axis points in the direction of the nominal sun facing side. The
zRSR axis is in the direction of the MONS Telescope boresight, and perpendicular to the
plane spanned by the adapter ring. TheyRSR completes the right handed system.

From an ACS point of view, the frame of interest is the SCB frame wrt. the inertial
frame. The orientation of e.g. the star trackers can be calculated in the SCB frame,
given the orientation in the RSR frame and the constant orientation of the RSR frame
wrt. the SCB frame. Throughout this project the calculation of the orientation from the
RSR frame to SCB frame is left out, and the orientations are simply assumed to be given
in the SCB frame.
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3.2 Operation Modes

The spacecraft operates in different modes, which must be defined from launcher release
to end-of-life. Different ACS requirements exist in each mode, and the modes ensure
that a minimum life support is available in case of a failure. The operation modes and
transitions between modes, is defined in [Bak et al., 2001]. The operation modes of the
attitude estimator is shown in Figure 3.2. A description of the modes is given in Table
3.1.

Figure 3.2: Rømer attitude estimator operation modes.

Mode Estimator Function
Standby No estimation.
Safe Mode Coarse Sun pointing attitude estimation

(two axis) based on raw sun sensor and
gyro measurements.

Coarse Coarse three-axis attitude estimation, us-
ing on sun sensors, gyros, magnetorquers,
and star trackers, if available.

Fine Fine three-axis attitude and rate estima-
tion, using gyros and star trackers.

Table 3.1: Operation modes of the Rømer Attitude Estimator.

Figure 3.2 shows the transitions between each mode with a number. The description of
each transition is as follows:

1. The system enters standby mode when initiated.

2. Safe mode is entered when reliable sun sensor and/or gyro measurements are
available.
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3. The estimator enters fine mode when when the error state covariance is below a
predefined threshold.

4. Transition back to coarse mode from fine mode, happens when the error state
covariance increases above the predefined threshold. Fine pointing is re-entered
if the error state covariance decreases below the threshold.

5. Transition to standby mode occurs when three axis attitude determination is im-
possible, and transition back to coarse mode occurs when three axis attitude de-
termination becomes available again.

6. Raw mode is entered when raw processing of data is desired.

7. Transition from coarse to raw mode and back is possible.

The estimator in this project is focused on the fine mode, where attitude estimation is ac-
quired using star trackers and gyros. The covariance of the state error is tracked, in order
to shift into coarse mode, in case the covariance exceeds the pre-defined threshold.



Chapter 4
System Requirements

The performance of the estimator is evaluated from the controller requirements. This
section summarizes the requirements of the satellite attitude controller in fine and coarse
mode, stated in [Bak et al., 2001]. These requirements are set by the science require-
ments of the MONS Telescope pointing precision.

4.1 Coarse Pointing Requirements

In coarse pointing mode sun acquisition is done within 15 degrees accuracy. Re-orientation
must be possible with a performance, which allows a180Æ re-orientation within ten min-
utes.

4.2 Fine Pointing Requirements

The requirements of the fine pointing are expressed in terms of absolute pointing and
relative pointing. Absolute pointing is the actual pointing towards the target boresight
axis of the MONS Telescope. Relative pointing specifies the pointing precision over a
time interval. The pointing drift error is used to express the requirements of the MONS
Telescope’s long term drift.

The requirements are:

� The absolute pointing error of the MONS Telescope boresight axis is less than
2am in pitch and yaw,60am in roll.
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� The relative pointing error is less than0:8am over each1s interval,0:35am over
each0:1s interval, in pitch and yaw. In roll it is less than2am over60s interval.

� The pointing drift error in pitch and yaw is less than:

– 2:4am over each time interval larger than100s.

– 1:5am over each100s interval.

– 1:8am over each10s interval.

Note that all numbers are95% confidence. The fine pointing performance expressed as
a power spectrum density (PSD) function is given in Figure 4.1.
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Figure 4.1: Relative pointing error requirements as a function of frequency, [Noteborn,
2001].



Part II

Modeling

37





Chapter 5
Star Tracker Model

This chapter describes the model used for the star trackers on Rømer. The model derived
in this chapter is based on the work in [Bayard, 1996].

The model is based on simulating the star tracker on pixel level, by projecting a simu-
lated star image onto the CCD. Optical distortion is added as function of the position in
the FOV, and the precision of the centroid algorithm is altered depending on the star cen-
ters on the pixels. The effect of the unmodeled quantities are added as a noise equivalent
angle (NEA). This noise is assumed to be white Gaussian noise.

5.1 Outline and Definitions

The model does not include a star catalogue. Instead a known set of stars are selected,
and shifted into the FOV, when the camera is rotated. Hence stars leaving the FOV to the
right, re-enter on the left. Projecting the star image onto the CCD gives a set coordinates
in the CCD frame, which is defined as follows:

� ThexCCD axis is in the increasing horizontal pixel readout direction of the CCD.

� TheyCCD axis is in the increasing vertical pixel readout direction of the CCD.

� ThezCCD forms the right handed system, and is in the direction of the boresight.

The CCD frame is shown in Figure 5.1. As seen in the figure, the angles� (pitch), 
(yaw) and� (roll) represent the rotations about thexCCD, yCCD andzCCD axes, respec-
tively. The vectorrStari is the vector from the center of the CCD to the projection of the
i’th star onto the CCD.
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CCD

yCCD

xCCD

zCCD

�

 

�

rStari

Figure 5.1: The CCD frame.

In Figure 5.2 a star is projected onto the CCD using a standard pinhole camera model.
Using this model, the direction to thei’th star can be found from the CCD readouts,
which are the elements of the position vector of the star on the CCD. The direction
of the star is given by the vector�Stari , containing the horizontal and vertical angular
distances to thei’th star.

From Figure 5.2 it is seen that the direction of thei’th star can be found by

�Stari;1 = tan�1
�
rStari;1

f

�
(5.1)

�Stari;2 = tan�1
�
rStari;2

f

�
(5.2)

given the horizontal readoutrStari;1 and vertical readoutrStari;2 from the CCD, and the
focal lengthf . The focal length is the distance from the pinhole to the image plane,
which is the CCD.

Based on a simulated attitude of the star tracker, the directions to the stars in the cat-
alogue can be calculated. The objective of the model is to calculate the perturbed di-
rections to the stars, caused by the major noise sources in the star tracker. Given the
true and perturbed directions to the stars, an error attitude can be calculated. Adding
this attitude error to the true attitude of the satellite, yields the simulated measurement
acquired from a star tracker. An illustration of the modeling principle of the star tracker
is shown in Figure 5.3.
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yCCD

xCCD

Pinhole f

rStari;2

rStari;1�Stari;2

�Stari;1

Figure 5.2: The projection of a star onto the CCD using a standard pinhole camera
model.
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Star directions

Pertubated star directions

Calculate direction to stars

Calculate rotation

Calculate angular errors+

Quaternion multiplication

Attitude measurementqm

Attitude errorq�st

Star tracker attitudeqst Star tracker angular velocity!st

Figure 5.3: Illustration of modeling principle.
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5.2 Star Tracker Modeling Algorithm

The algorithm for modeling the star tracker follows the principle outlined in Figure 5.3.
There are three major noise sources which influence the measurement:

� Star availability

� Centroiding algorithm performance

� Residual optical distortion

In addition, the remaining noise sources are added as white noise. This white noise is
added as NEA, which is white noise added to the angle of the star direction. The star
availability depends on the angular velocity of the satellite, since the dimmer stars will
be undetectable as the angular velocity of the star tracker increases. The steps of the
model are

1. Calculate the direction of the stars

2. Select a subset of stars based on angular velocity

3. Calculate centroiding algorithm performance

4. Calculate residual optical error

5. Add NEA

6. Calculate noise equivalent measurement error

The algorithm is based on a set of parameters which are calculated in the initialization
of the algorithm. The initialization is described after the algorithm has been derived.

Stars in the FOV

The first step of the model is to calculate the direction of the stars in the FOV. In order to
avoid the modeling of a real star catalogue, a number of fictitious stars are placed in the
FOV. When the camera changes orientation, the stars are moved in the FOV, and stars
leaving in one side, enters at the opposite side. This means that the star identification,
and the delays associated with it, are not included in the model at this point.

The set of stars in the FOV are represented by the vectors

�0

FOVi =

�
�0FOVi;1

�0FOVi;2

�
i = 1; 2; :::; nas (5.3)



44 Star Tracker Model

where�0FOVi;1 and�0FOVi;2 are the horizontal and vertical angular distances, respectively,
given in an inertial frame. The number of all stars in the FOV is denotednas. The
number of stars used in the model varies with the angular velocity of the star tracker.
The stars in Equation 5.3 are associated with a parameter representing the magnitude
of the star. When the star tracker rotates with a given angular velocity, the stars with
magnitude above a certain threshold are undetectable by the star tracker. Note that the
magnitude of a star is inverse proportional with its brightness. Since some stars are
undetectable, the stars used in the model are selected from the set in Equation 5.3 and
re-indexed. This gives a new subset of stars, denoted as

�FOVi =

�
�FOVi;1

�FOVi;2

�
i = 1; 2; :::; ns (5.4)

wherens denotes the number of stars used in the model, being a function of the star
tracker angular velocity. The selection must be carried out at every sample time of the
model, since the angular velocity varies in time.

To minimize the complexity of the model, the subset of stars are based on discrete values
of the angular velocity. The performance of the star tracker is based on the angular
velocity which is divided into three levels: low, medium and high. When the angular
velocity is low, the subset of stars in Equation 5.4 is the full set of stars in the FOV
of Equation 5.3. The number of stars in the subset, decreases as the angular velocity
changes from low to medium, and again when changing from medium to high.

Upon selection of the subset of stars, the direction of the stars in the CCD frame, must
be calculated. Due to the change in attitude of the satellite, the direction of the stars in
the CCD frame is different than in the inertial frame. Given the attitude quaternion of
the star trackerqst, which varies with the attitude of the satellite, the equivalent 1-2-3
Euler angles�,  and� can be found by

� = atan2

��2 [q1q2 � q3q4]

cos(�)
;
q21 � q22 � q23 + q24

cos(�)

�
(5.5)

 = atan2

��2 [q3q3 � q1q4]

cos(�)
;
�q21 � q22 + q23 + q24

cos(�)

�
(5.6)

� = atan2(2 [q1q3 + q2q4] ; cos(�)) (5.7)

where

cos(�) =
q
[q21 � q22 � q23 + q24]

2
+ 22 [q1q2 � q3q4]

2 (5.8)

The derivation of the above equations can be found in Appendix A.
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Recalling Figure 5.1 and Figure 5.2, the angular directions to thei’th star in the CCD
frame are changed by the pitch and yaw of the satellite attitude, written as

�Pi;1 = �FOVi;1 +  (5.9)

�Pi;2 = �FOVi;2 + � (5.10)

In order to keep the nominal set of stars in the FOV, the star directions are modulo
shifted by the size of the FOV

�Mi;1 = mod�FOV

�
�Pi;1 +

�FOV

2

�
� �FOV

2
(5.11)

�Mi;2 = mod�FOV

�
�Pi;2 +

�FOV

2

�
� �FOV

2
(5.12)

Finally the stars on the CCD are rotated by the roll angle�, written as

�Stari =

�
cos(�) sin(�)
�sin(�) cos(�)

� �
�Mi;1

�Mi;2

�
(5.13)

Given the available stars of the FOV in the CCD frame, the noise of the star tracker is
calculated.

Centroiding Algorithm Performance

The centroiding algorithm provides an estimate of the star location on the CCD, which
has an accuracy that is better than the distance between the pixels. This is possible when
the star is defocused, and hits more than a single pixel.

The performance of the centroiding algorithm, is degraded when the center of the defo-
cused star circle is not centered on or between pixels. Hence it is a periodic function of
the position on the CCD, with the pixel spacing as period. It is assumed that the error
of the algorithm is zero in best case, shown in Figure 5.4.

The worst case performance must be known, and is a fraction of a pixel. When a star
image on the CCD moves between pixels, the noise is modeled as a sine function, as-
suming that the performance is worst case when the star center is between the images in
Figure 5.4, which generates a non-symmetrical pattern, illustrated in Figure 5.5.

It is seen from Figures 5.4 and 5.5 that the difference in performance is the loss of
a symmetrical pattern as the center of the defocused star approaches the worst case
position on a pixel.
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Pixel

Defocused star

CCD

Figure 5.4: Illustration of best case performance of the centroiding algorithm, when
centered on (left) or between (right) a pixel.

Pixel

Defocused star

CCD

Figure 5.5: Illustration of the worst case performance of the centroiding algorithm.
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Assuming equal pixel spacing in both horizontal and vertical direction, the periodic
function of the noise in the star position on the CCD,eca, is given by

ecai = pcasin
�
2��Stari

dca

�
(5.14)

wherepca is the worst case performance (peak) of the centroiding algorithm, anddca is
the period of the centroiding error, which is set to the pixel spacing in radians. Making
the noise function periodic with the pixel space in radians instead of the pixel space
on the CCD is not exact, but removes the need of knowing the focal length of the star
tracker. If the error is calculated on the CCD instead of in the angular direction, the focal
length is needed in order to add the noise to the vector�Stari with angular elements. This
is seen from Equations 5.1 and 5.2.

The centroiding error added to�Stari;1 is plotted as a function of�Stari;1 and�Stari;2 in
Figure 5.6.
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Figure 5.6: Centroiding error of�Stari;1.

The plot of the centroiding error in the vertical direction,�Stari;2 is the same as in Figure
5.6, except that the function is periodic with�Stari2 instead of�Stari;1. The plot is not
shown as it is the plot in Figure 5.6 rotated90Æ.
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Residual Optical Error

The optical residual error is the error remaining in the optics after calibration, which
is performed either on-ground or in-flight. The calibration error causes distortion in
the image projected onto the CCD. The model of the error is based on a function from
[Bayard, 1996], derived to simulate real-life experienced errors. The function describing
the optical error�opti , in the angular direction of thei’th star, is given by

�opti =
�Stari���Stari

��poptsin

 
2�
���Stari

��
dopt

!
(5.15)

wherepopt is the worst case error (peak), anddopt is the period of the error. The values
of the parameters should be set to

popt =
1

10
dpixel (5.16)

dopt =
1

3
�FOV (5.17)

where�FOV is the angle of the square FOV, assuming that the horizontal and vertical
distances are equal, anddpixel is the radial pixel spacing. These values are chosen in
order to simulate the residual optical error experienced on the Cassini project..

The plot of the residual optical error in the horizontal direction�Star;1, as a function of
�Star;1 and�Star;2 is given in Figure 5.7. The error is plotted over a FOV of22Æ. The plot
of the vertical error is left out, since it is Figure 5.7 rotated90Æ.

Noise Equivalent Angle

The noise equivalent angle is white noise added to the angular distances of the star
direction. The noise originates from a number of optical and electrical inaccuracies.
The NEA is given by

�neai =

�
�neai;1

�neai;1

�
�st (5.18)

where�neai;1 and�neai;2 are Gaussian white noise signals, with mean value of one, and
�st is the 1-sigma value of the star tracker’s NEA. The 1-sigma value is increased as a
function of the angular velocity of the satellite, following the principle described in star
availability.



5.2 Star Tracker Modeling Algorithm 49

−0.2

−0.1

0

0.1

0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−4

−2

0

2

4

x 10
−5

�Star;1 [rad]�Star;2 [rad]

� o
pt

;1

[r
ad

]

Figure 5.7: Residual optical error of�Star;1.

Attitude Measurement error

Given the angular measurement noise two vector sets can be found from the true star
directions�Stari and the measured star directions�Measi , given by

�Measi = �Stari + �cai + �opti + �neai i = 1; 2; :::; ns (5.19)

where�Stari is the true direction to thei’th star,�cai is the error of the centroiding algo-
rithm, �opti is the residual optical error, and�neai is the NEA.

An error quaternionq�st
, describing the rotation equivalent to the measurement error of

the star tracker, is sought. Two vector sets are formed, containing the true and measured
Cartesian coordinates in the CCD frame of the stars in the FOV. By observing Figure
5.2 it is seen that the Cartesian direction vectors are given by
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sStari =

2
4�f tan(�Stari;1)
�f tan(�Stari;2)

f

3
5 i = 1; 2; :::; ns (5.20)

sMeasi =

2
4�f tan(�Measi;1)
�f tan(�Measi;2)

f

3
5 i = 1; 2; :::; ns (5.21)

Normalizing the vectors yield

ŝStari = �
2
4�tan(�Stari;1)

tan(�Stari;2)
1

3
5 1q

tan(�Stari;1)
2 + tan(�Stari;2)

2 + 12
i = 1; 2; :::; ns

(5.22)

ŝMeasi =

2
4tan(�Measi;1)

tan(�Measi;2)
1

3
5 1q

tan(�Measi;1)
2 + tan(�Measi;2)

2 + 12
i = 1; 2; :::; ns

(5.23)

From the two vector sets, Wahba’s problem is described as a minimization of the per-
formance index

L
�
A
�
q�st

��
=

1

2

nsX
j=1

wi

��ŝStari �A
�
q�st

�
ŝMeasi

��2 (5.24)

whereA
�
q�st

�
is the noise equivalent rotation, that fits the vectorized measurements to

the data in the star catalogue. A number of algorithms exist to solve Wahba’s problem
of Equation 5.24. It is chosen to use the q-Method, which gives an analytical solution
in the form of an attitude quaternion. The algorithm is described in Appendix B.

In order to obtain a minimum variance solution, the weightwi is calculated using

w2
i =

1

�2ca+ �2st
(5.25)

where�ca is the mean-square value of the centroiding error, calculated as

�ca =

q
p2ca+ d2pixel

4
(5.26)
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Even though the centroiding error is not white, it is still used in the variance expression
of Equation 5.25, since it is high frequency and independent of the NEA. Equation
5.26 arises from the general equation of the mean-square value of a sine function with
amplitude of one.

From Equation 5.24 a noise equivalent quaternionq�st
is acquired. Hence the measured

attitudeqm, given by the star tracker, is

qm = q�st
qst (5.27)

whereqst is the true attitude of the star tracker. Note that quaternion multiplication is
implied.

Rate Dependent Performance

In order to simulate the decrease in performance of the star tracker, when the angular
rate increases, two parameters of the model are calculated as functions of the angular
rate:mcut and�st. The magnitude cut-off levelmcut defines the number of stars to be
selected from the star catalogue, based on magnitudes of the stars. The 1-sigma value
of the NEA�st defines the deviation of the white noise added by the star tracker.

In order to reduce model complexity, the rate is divided into three levels, low medium
and high. Hence three values ofmcut and�st are calculated in the initialization of the
model, and used dependent on the rate level.

The magnitude cut-off levelsmcut,low, mcut,mid andmcut,high, are the levels of magnitude
which are used to filter star catalogue in low, medium and high rate levels, respectively.
The 1-sigma values of the NEA, used in the rate levels, are denoted�st,low, �st,mid and
�st,high.

The parameters!low,mid and!mid,high sets the values at which the angular rate of the star
tracker changes level from low to medium and from medium to high, and vice versa.
When the rate level changes, the parameters�st andmcut are set to the appropriate values
of the new level. The values ofmcut and�st are described as functions of the angular
rate of the star tracker!st, by
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mcut (!st) =

8><
>:
mcut,low if !max < !low,mid

mcut,mid if !low,mid � !max < !mid,high

mcut,high if !mid,high� !max

(5.28)

�st (!st) =

8><
>:
�st,low if !max < !low,mid

�st,mid if !low,mid � !max < !mid,high

�st,high if !mid,high� !max

(5.29)

where!max is the worst case angular rate of the stars on the CCD. The horizontal and
vertical angular rate of the stars on the CCD,!�;1 and!�;2, can be expressed as functions
of the angular rate of the star tracker!st, by

!�;1 = j!st;2j+ j!st;3j �FOVp
2

(5.30)

!�;2 = j!st;1j+ j!st;3j �FOVp
2

(5.31)

assuming that the roll rate!st;3 is acting on a star in the corner of the FOV, which is
a worst case scenario. Based on the worst case angular rate of the stars on the CCD,
the level parameter!max is set to the element of!� with highest value. This can be
expressed as

!max =

(
!�;1 if !�;1 � !�;2

!�;2 if !�;1 < !�;2

(5.32)

Combining Equations 5.28, 5.29, 5.30, 5.31, and 5.32, yields the rate dependent param-
etersmcut and�st.

Initial Parameters

The simulation model of the star tracker, makes use of several parameters, which must
be given for the star tracker, or calculated based on the given data. The guide lines
in [Bayard, 1996] are described first, which comply with experience from Cassini and
SIRTF projects. Corrections have been made to these values, in order to reproduce data
measured with the Terma star tracker. These changes are described in the next section.

The parameters which are needed are listed in Table 5.1.

The calculation of the parameters in Table 5.1 is based on a known set of parameters
describing the characteristics of the star tracker. These fundamental parameters are
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Symbol Description
�FOV Angular distance of the horizontal and vertical FOV.
pca Centroiding error peak.
dca Centroiding error period.
popt Optical distortion peak.
dopt Optical distortion period.
�st,low 1-sigma value of the NEA at low rate.
�st,mid 1-sigma value of the NEA at medium rate.
�st,high 1-sigma value of the NEA at high rate.
mcut,low Star magnitude filtering level at low rate.
mcut,mid Star magnitude filtering level at medium rate.
mcut,high Star magnitude filtering level at high rate.
!low,mid Low/medium rate level.
!mid,high Medium/high rate level.

Table 5.1: Initial parameters for the star tracker model.

� The FOV of the camera,�FOV.

� Number of pixels per axis on the CCD,npixels.

� 1-sigma value of the NEA disregarding rate performance decrease,�st,low.

� Camera exposure time,texp.

The calculation of the parameters in Table 5.1 using the above four fundamental param-
eters is described in the following.

The centroiding error peakpca is set to a fraction of a pixel. Experience from the SIRTF
project suggests1=40 of a pixel, giving

pca =
1

40
(5.33)

This value is chosen to achieve a 3-sigma RMS value of the centroiding error of�RMS =
0:05. The 3-sigma RMS value of a sinusoidal errorpcasin(!x), is given by

�RMS =
3p
2
pca � 2pca (5.34)

m
pca � 1

2
�RMS =

1

40
(5.35)
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The period of the centroiding errordca is set to the radial pixel spacingdpixel, given by

dca = dpixel =
�FOV

npixels
(5.36)

The optical error is typically proportional with the size of the FOV. Based on experience
of the Cassini project,popt is given by

popt = �FOV � 10�4 (5.37)

In general, the optical error after a ground calibration is expected to be of low spatial
frequency, hencedopt is chosen to be

dopt = 0:6
�FOV

2
(5.38)

The rate levels!low,mid and!mid,high are found from the amount of pixels the stars on the
CCD will move in a single exposure. Change from low to medium level, is set when the
image is smeared2=3 of a pixel. When8:7 pixels are smeared in a single exposure, the
level changes from medium to high, i.e.

!low,mid =
2

3

dpixel

texp
(5.39)

!mid,high = 8:7
dpixel

texp
(5.40)

The deviation of the NEA at low level rate must be specified for the star tracker. The
values in medium and high rate levels are calculated from�st,low by

�st,mid = 2�st,low (5.41)

�st,high= 10�st,low (5.42)

The magnitude cut-off value in low rate level is set to include all stars from the star
catalogue. A value of ten is adequate. The values in medium and high rate level are cal-
culated using a�2:5log(!max=dpixel) rate dependency [Bayard, 1996], where!max=dpixel

is the angular rate of the star tracker in pixels per second. The rate!max is calculated
using Equations 5.30, 5.31, and 5.32.
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5.3 Modeling the Terma NEMO Star Tracker

The star tracker model described in Section 5.2, is a general model. The calculation of
the initial parameters, adapts the model to replicate experience from star trackers used
in the Cassini and SIRTF projects. It is not expected that the guidelines for calculating
the initial parameters comply with the Terma NEMO star tracker. Hence the initial
parameters are corrected in order to comply with measurements from the star tracker
conducted by Terma .

The parameters supplied in [Paulsen and Maresi, 2000], are RMS errors from the cen-
troiding error, residual optical error and noise equivalent angle, observed for a single
star. The maximum occurring chromatic aberration error is also stated. The parameters
are listed in Table 5.2.

Source Value
NEA 1:9as (RMS)
Chromatic Aberration 1:6as (Max)
Centroiding Error 2:0as (RMS)
Residual Distortion 4:0as (RMS)
Total 5:1as (RSS)

Table 5.2: Single star performance observed on the second flight model of the NEMO
star tracker [Paulsen and Maresi, 2000].

The chromatic aberration is not modeled, hence it is chosen to increase the RMS error
of the NEA to the RSS value of the NEA and chromatic aberration

RSS(�nea; �chrom) =
p
1:92 + 1:62as= 2:5as (5.43)

where�chrom is the error of the chromatic aberration.

The parameters of the model, subject to a correction, arepca andpopt, which are the
amplitudes of the periodic centroiding and optical errors, respectively. The parameters
are found by multiplying the recommended values by a correction factor. This correction
factor is found by adding only the noise source at hand, then adjusting the amplitude,
such that the resulting angular error is consistent with the values of Table 5.2.

In order to compare the values from Table 5.2 with model performances, the vectorized
pointing error must be transformed to a single parameter error, which is the angular
separation between the true star direction and the measured star direction. Since the
elements of a star direction vector�Stari are given in radians, the angular separation
between the true and noise inflicted star directions, is calculated using rules of cosine
for spherical triangles (see Figure 5.8)
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Figure 5.8: Illustration of spherical triangle.

cos() = cos(Æ) cos(�) + sin(Æ) sin(�) cos(�)

= cos(Æ) cos(�) (5.44)

which holds when� is right angled. Realizing thatÆ = �Stari;1 and� = �Stari;2, and
denoting the sought single angular direction of thei’th star�Stari , yields

�Stari = cos�1 (cos(�Stari;1) cos(�Stari;2)) (5.45)

which holds since the angle between the horizontal and vertical directions is right.

The associated noise inflicted direction is given by

�Measi = cos�1 (cos(�Measi;1) cos(�Measi;2)) (5.46)

where�Measi is the star direction with the noise source, which is sought fitted to the
values of Table 5.2, is added. The single angular error in the star direction�erri , is the
difference between the directions of Equations 5.45 and 5.46

�erri = �Stari � �Measi (5.47)
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Calculating the single angle error in the star directions for all possible star directions in
the FOV, yields RMS values of the single star performance which can be compared with
the values of Table 5.2. Table 5.3 shows the correction factors, giving the sought single
star performance.

Parameter Correction Factor
pca 0.03697
popt 0.7204
�st,low 1.3073

Table 5.3: Correction factors needed to reflect the Terma NEMO star tracker.

The specified RMS value of the NEA, specified for the Terma star tracker, should be
multiplied by 1:3073, in order to include the chromatic error. The peak of the error
functions of the centroiding error and the optical error, given in Equations 5.33 and
5.38, are multiplied by0:03697 and0:7204, respectively.

Simulation Results

The model of the NEMO star tracker has been implemented as MATLAB functions, and
a SIMULINK interface is supplied. The night sky test from [Paulsen and Maresi, 2000]
is simulated, and the results are compared to those of Terma.

The data from Terma originate from a night sky test, where the star tracker is pointed to
the sky, and rotated by the rotation of the Earth. The pointing performance of the star
tracker is shown in Figure 5.9.

The roll performance during the same test is shown in Figure 5.10. The performance
of the roll is significantly poorer than the pointing performance. The RMS errors of the
pointing and roll performance are1:2as and6:2as, respectively.

The SIMULINK model parameters are initialized from the fundamental parameters of
the NEMO star tracker. The parameters are listed in Table 5.4. Note that the magni-
tude thresholds are all set to ten, since the rate dependent star selection has not been
implemented at this point. This is discussed in the conclusion of the section.

The simulated performance of the star tracker model is shown in Figure 5.11. The RMS
errors of the pointing and roll performance are0:99as and6:19as, respectively.

In this simulation, twelve stars were used from the star catalogue. The number of stars
used by the star tracker in the Terma night sky test is not stated in the reference. Sources
at Terma state, that the typical number of stars used by the star tracker is around 50.
With this number of stars, the simulation model performance is better than in the test.
In order to examine the performance of the star tracker wrt. the number of stars used, the
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Figure 5.9: NEMO star tracker pointing performance in night sky test [Paulsen and
Maresi, 2000].

Figure 5.10: NEMO star tracker roll performance in night sky test [Paulsen and Maresi,
2000].
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Fundamental Parameters
FOV 22Æ

Pixels 1024
NEA 1:9as
Camera Exposure Time 150ms

Model Parameters
�FOV 0:3840rad
pca 0:01386� 10�3rad
dca 0:3750� 10�3rad
popt 0:02766� 10�3rad
dopt 0:1152rad
�st,low 0:01211� 10�3rad
�st,mid 0:02422� 10�3rad
�st,high 0:1211� 10�3rad
mcut,low 10
mcut,mid 10
mcut,high 10
!low,mid 1:667� 10�3rad=s
!mid,high 21:75� 10�3rad=s

Table 5.4: The fundamental parameters of the Terma star tracker and the model param-
eters.
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Figure 5.11: Star tracker simulation of night sky test using 12 stars.
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same simulation has been run repeatedly with different number of stars in the catalogue.
The result is plotted in Figure 5.12.
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Figure 5.12: Star tracker performance in night sky simulation as a function of number
of stars used from the catalogue.

It is seen from the data plotted in Figure 5.12 that when using 50 stars, the RSS perfor-
mance of the star tracker is3:15as. From the simulation result, the pointing performance
is found to be0:48as and3:11as for the roll. This is significantly better than the test re-
sults. The model should be verified with more tests, and the tests should show the
number of stars used by the star tracker.

The angular rate of the night sky test, is the angular rate of the Earth’s rotation

!Earth=
2�

24 � 3600rad=s

= 0:7272� 10�6rad=s (5.48)

hence the model operates in the low rate level. From Table 5.4 it is seen that when the
rate of the star tracker increases to1:667 � 10�3rad the model is in medium level, and
in high level when the rate increases to21:75 � 10�3rad=s. No test results have been
acquired in order to verify the credibility of these values.

The night sky test simulation has been repeated with higher angular rate, in order to
compare the results of the performance, when increasing the angular rate of the star
tracker.
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The results of the simulation in low, medium and high level is shown in Table 5.5. In
medium level, the angular rate of the star tracker was set to0:01rad. This value is
between�low,mid and�mid,high from Table 5.4, hence the model will operate in medium
level. The pointing performance has an RMS value of1:76as and roll performance of
10:6as RMS.

Rate Level Pointing (RMS) Roll (RMS) Total (RSS)
Low 0:99as 6:20as 6:28as
Medium 1:76as 10:6as 10:7as
High 7:80as 50:3as 50:9as

Table 5.5: Results of rate dependent simulation.

The simulation was repeated with an angular rate of30 � 10�3rad=s, which is higher
than�mid,high. Hence the model will operate in high level. The pointing performance has
an RMS value of7:80as and and roll performance RMS value of50:3as.

Discussion of Results

The model correctly decreases the performance of the star tracker, when the angular rate
increases, as seen in Table 5.5. This is done by increasing the NEA when the angular
rate increases. The star catalogue selection is not used in the simulation, hence all stars
are used regardless of angular rate. The magnitude cut-off has been set to ten at all rate
levels. The suggested�2:5log(!max=dpixel) dependency, where!max is the angular rate
of the star tracker in pixel per seconds, yields values that exclude all the stars from the
catalogue in both medium and high rate level.

In order to investigate the magnitude thresholds further, the calculations are shown.
From Table 5.4 it is seen that the when the rate level exceeds1:667� 10�3as, the model
will operate in medium rate level. The magnitude cut-off level is sought for this level.
The pixel spacing in radians is

dpixel =
�FOV

npixels
=

0:3840

1024
= 0:3750� 10�3rad (5.49)

using the values of Table 5.4. The angular rate level!low,mid is set to the rate where2=3
of a pixel is smeared in a single exposure
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!low,mid =
2

3

dpixel

texp

=
2

3

0:3750� 10�3

0:15
rad

= 1:667� 10�3 (5.50)

as recommended in [Bayard, 1996]. Calculating the magnitude threshold as suggested
in [Bayard, 1996], yields

mcut = �2:5log

�
1:667� 10�3

0:3750� 10�3

�
= �3:73 (5.51)

This value will exclude all stars from the catalogue, since the brightest star is Sirius
with a magnitude of�1:46. This implies that the suggested magnitude threshold is
inapplicable for the NEMO star tracker. Either the smearing factor of2=3 in Equation
5.50 is too large, or the rate dependency for the NEMO star tracker should be described
by a different function, than in Equation 5.51.

If the number of photons that must reach a single pixel, in order for a light source to
be detectable, is known, the required magnitude of a star, given the angular rate, can be
found. This is the function that describes the threshold of the star magnitudes. This has
not been analyzed in this project.

It should be noted that there is no verification of the magnitude cut-off levels in [Bayard,
1996], instead all the cut-off levels have been set to ten.

As mentioned in the above, no test results are available to verify the results of the rate
dependent performance. Tests should be conducted, which can validate or invalidate the
model results.

When conducting the simulations, it has been noticed that biases can occur in the perfor-
mances of the star tracker. This is due to low spatial frequency of the optical distortion.
Since the star catalogue has been randomly generated, the bias depends on the star lo-
cations on the error function of the optical error.

The low spatial frequency is suggested in [Bayard, 1996], based on the expected error
after ground calibration of the SIRTF star tracker, which has a FOV of3Æ. This is
significantly smaller than the22Æ FOV of the NEMO star tracker. If the frequency of
the optical is increased, it will act more like a white noise, and it is expected that the
RMS performance of the star tracker will decrease. Since the performance is better in
the simulation than in the test, when using 50 stars as stated by Terma, this effect is
desired. This also implies that the reason that the performance of the model is better
than in the test, is the low spatial frequency of the optical error.
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5.4 Conclusion

In this chapter, a model of the NEMO star tracker has been derived. The model has
been implemented in SIMULINK and the model parameters are tuned to fit the NEMO
star tracker. The simulation results are compared with a night sky test conducted by
Terma .

One major property of a star tracker is the decreased accuracy of rotation about the bore-
sight axis. The model correctly simulates this characteristic. When using twelve stars in
a random generated star catalogue, the result of the model is close to the measurements
of the night sky test. The number of stars used in the test has not been observed, but staff
at Terma states that the quantity is around 50. When using 50 stars in the simulation
the results are significantly better than the in test. This is also the experience of Terma
simulations.

The low spatial frequency of the optical error, could be the cause of this. The frequency
of the optical error is based on the size of the FOV. The FOV of the NEMO star tracker is
seven times larger than the SIRTF star tracker, hence this indeed is the parameter where
the two trackers differ most. Increased frequency of the optical error increases the RMS
error of the performance, and reduces the probability of bias, since the function of the
error at high frequency looks more like a random function.

The angular rate degradation is done by increasing the NEA and decreasing the num-
ber of stars used from the star tracker. No test have been conducted to verify the rate
performance degradation, instead the performance is presented in the three rate levels.

The magnitude filtering of the star catalogue has not been successfully implemented
since the recommended magnitude thresholds, yields values that exclude all stars from
the catalogue. Instead all stars are used, disregarding the rate of the star tracker.



Chapter 6
Gyro Model

This section describes the model used for the rate gyros mounted on the satellite. Several
error sources inflict the measurement of a rate gyro. Based on a trade of between model
complexity and accuracy, the modeled error sources are stated in Table 6.1.

Scale Factor Error The scale factor describes the relationship between the mea-
sured output voltage and the angular rate of the input axis.
This scale factor is not known exact.

Alignment Error The mounting of the gyro is inflicted with an error, resulting
in an input axis that is different from the intended.

Drift The measurement from the gyro has a drift, which is mod-
eled as a random walk.

Bias The bias is the expected gyro output when the input rate is
zero.

White Noise White noise is added to the measurement due to electrical
perturbations.

Table 6.1: Modeled rate gyro error sources.

The direction of the angular rate measured by the gyro, is defined by the orientation of
the gyro. The vector around which angular rate is measured, is the input axis of the
gyro, denoted̂rg.

The gyro cannot measure the direction of the angular rate. The direction is given by the
orientation of the gyro. The magnitude of the angular rate is measured by the gyro, and
the direction is the direction of the gyro input axis.

Given an arbitrary angular rate of the satellite!, on which the gyro is mounted, the
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measured angular rate is the projection of! onto the input axis. The projection is
shown in Figure 6.1, denoted!g. Hence the angular rate magnitude measured by the
gyro!g, is given by

!g = !Tr̂g (6.1)

assuming zero noise. Given the magnitude measurement from the gyro and the input
axisr̂g, the angular rate is

!g =
�
!Tr̂g

�
r̂g (6.2)

Equation 6.1 gives the true angular rate of the input axis. In the following sections, the
equation is expanded to include the errors stated in Table 6.1.

6.1 Scale Factor Error

In order to include the scale factor error, the projection factor is written as

!Tr̂g = ksfug (6.3)

whereksf is the true scale factor andug is the voltage output from the gyro. Including
the scale factor error, the perturbed projection factorp� is

p� = [ksf + �0sf] ug (6.4)

which is written in terms of the true projection factor as

p� = !Tr̂g + �0sfug

= !Tr̂g [1 + �sf] (6.5)

Inserting the perturbed projection factor into Equation 6.1, yields

!g = !Tr̂g [1 + �sf] (6.6)

The scale factor error�sf is a constant, in order to minimize model complexity. In reality,
the scale factor error changes with the temperature of the gyro.
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6.2 Alignment Error

When mounting the gyro, the input axis of the gyro is sought aligned with some vector
on the satellite. In Figure 6.1 a gyro frame has been placed with thezg axis pointing
in the direction of the intended input axisr̂m, and centered in the mounting point of the
gyro. The angle�align is the angular separation between the sought input axisr̂m and the
true input axiŝrg.

Gyro

�align

yg

xg

zg

r̂g

!sat
j!gj

r̂m

Figure 6.1: Misalignment of the gyro wrt. the gyro frame.

The true input axis is written in terms of the sought input axis, as

r̂g = A (�align) r̂m (6.7)

Inserting into equation 6.6, yields

!g = !TA (�align) r̂m [1 + �sf] (6.8)
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As with the scale factor error the alignment error is modeled as a constant noise source,
even though thermal fluctuations perturb the alignment of the gyro. This is again a trade
off between model complexity and model accuracy.

6.3 Drift

The drift �drift is an error which is time correlated. The error is added to the gyro mea-
surement of Equation 6.8, which becomes

!g = !TA (�align) r̂m [1 + �sf] + �drift (6.9)

Note that the drift error is added in the direction of the input axis, which is expressed
in terms of the alignment error. The drift error is modeled as a random walk, by the
differential equation

_�drift = wdrift (6.10)

wherewdrift is zero mean uncorrelated noise, with deviation�drift .

6.4 Bias

The bias is the expected zero input value of the angular rate of the input axis. Hence it
is a constant added to the gyro measurement. Equation 6.9 is expanded to

!g = !TA (�align) r̂m [1 + �sf] + �drift + �bias (6.11)

6.5 White Noise

White noise is added in the direction of the input axis in order to simulate electrical
perturbations, and other unmodeled disturbances. The final equation of the gyro mea-
surement is

!g = !TA (�align) r̂m [1 + �sf] + �drift + �bias+ wg (6.12)

wherewg is zero mean Gaussian white noise with a deviation of�g.
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6.6 Modeling the QRS11Pro Rate Gyro

From Equation 6.12 the model of the measurement is given. It is chosen to include the
direction of the angular rate in the model. Recalling Equation 6.2, the vector of the
angular rate is given by

!g =
�
!TA (�align) r̂m [1 + �sf] + �drift + �bias+ wg

�
r̂m (6.13)

whereA (�align) r̂m is the true input axis in terms of the sought input axis,�sf is the scale
factor error,�drift is the drift of the measurement,�bias is the zero input bias, andwg is
white noise.

Note that the direction of the angular rate is the input axisr̂m, and not the true input axis
r̂g, since the true input axis is unknown. The best estimate of the angular rate, assuming
no knowledge of the alignment error, is the estimated rate magnitude in the direction of
the sought input axis.

From the specifications of the gyro, the parameters of Equation 6.13 are found. Table
6.2 shows the parameters used for the simulation model. The misalignment angle is an
expected value.

Parameter Symbol Value
Scale Factor Error �sf 1%
Misalignment Angle �align 0:5Æ

Rate Drift Deviation �drift 0:0002Æ=s2

Bias �bias 0:5Æ=s
White Noise Deviation �g

p
2� 0:01Æ=s

Table 6.2: Model parameters used in the gyro simulation.

The white noise deviation is found from the white noise specification of0:01Æ=s=
p

Hz.
The low pass2Hz filter in the external electronics filters the white noise with a frequency
above2Hz, regardless of the sampling frequency.

Simulation Results

The gyro model has been implemented in SIMULINK , and the result is shown in Figure
6.2.
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Figure 6.2: Angular rate measurement noise calculated by the gyro noise model.

Discussion of Results

The result of the simulation gives the expected result. No data from real life tests with
the QRS1Pro gyro have been available, hence the model lacks verification.

The verification of the model is simply done, by comparing the output noise with the
specification of the gyro. Comparing the parameters of Table 6.2 with the Figure 6.2
confirms the correct implementation of the model. However the specifications should
be modified to reflect the true behavior of the gyro, which only can be done through a
real life test. This is not done in this project, instead the parameters of Table 6.2 are
used.



Chapter 7
Modeling Satellite Attitude

This chapter derives the equations used for modeling the kinematics and dynamics of
satellite rotations, and has previously been published in [Bhanderi, 2001].

The direct cosine matrices contain nine parameters with three degrees of freedom. Due
to this redundancy, numerous ways of representing the satellite attitude with a minimum
set of parameters have been developed. Euler angles describe the rotation around the
principal axes and use therefore only three parameters. However some singularities arise
for some rotations, which is why Euler angles are commonly used when the attitude of
the object involved, is known to be within a certain margin [Wertz, 1978].

Quaternions use four parameters with a single constraint, to represent attitude, and are
subject to no singularities. This is useful when considering that the attitude of a satellite
is usually unknown after the release from the launcher. For this reason quaternions are
commonly used in space applications and also for this project. Appendix A on page 133
gives a brief description of the quaternions and their algebra.

The modeling of a satellite’s rotation is divided into the kinematic equation and the dy-
namic equation. The kinematic equation describes the change in the attitude parameters
of the satellite, regardless of the forces acting on it. The dynamic equation describes the
time dependent parameters as functions of outer forces.

7.1 Kinematic Equation

Let the attitude of a satellite at timet andt+�t be denotedq (t) andq (t+�t). If the
rotation of the satellite in the time period�t is denotedq (�t), the propagation of the
attitude fromt to t +�t can be written
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q (t +�t) = q (t) q (�t) (7.1)

Writing q (�t) in terms of rotation angle�� around the vectoru in time�t, yields

q (�t) =

2
664
u1sin

�
��
2

�
u2sin

�
��
2

�
u3sin

�
��
2

�
cos
�
��
2

�
3
775 (7.2)

Assuming thatu and�� are constant over the time�t, and using the definition of the
quaternion product, Equation 7.1 is written

q (t +�t) =

2
664cos

�
��

2

�
14�4 + sin

�
��

2

�2664
0 u3 �u2 u1
�u3 0 u1 u2
u2 �u1 0 u3
�u1 �u2 �u3 0

3
775
3
775 q (t) (7.3)

where14�4 is the 4 by 4 identity matrix. For infinite small time steps,�� can be
approximated by

�� = j!j�t (7.4)

where! is the instantaneous angular velocity of the satellite. Using small angle approx-
imations of sine and cosine, Equation 7.3 can be expressed as

q (t +�t) =

�
14�4 +

�t

2



�
q (t) (7.5)

where


 = j!j

2
664

0 u3 �u2 u1
�u3 0 u1 u2
u2 �u1 0 u3
�u1 �u2 �u3 0

3
775 (7.6)
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Realizing thatu = !̂, Equation 7.6 can be written


 =

2
664

0 !3 �!2 !1
�!3 0 !1 !2
!2 �!1 0 !3
�!1 �!2 �!3 0

3
775 (7.7)

The differential equation ofq (t) is defined as

_q (t) = lim
�t!0

q (t +�t)� q (t)
�t

(7.8)

Inserting Equation 7.5 yields the sought kinematic differential equation

_q (t) =
1

2

q (t) (7.9)

7.2 Dynamic Equation

The dynamic equation of motion is derived from the change in angular momentum of the
satellite. An expression for the change in angular velocity, as a function of the applied
torques is sought. The angular momentuml, is given by

l =
kX

i=1

li

=
kX

i=1

ri �mivi (7.10)

whereri is the position of theith particle with massmi and velocityvi. Taking the time
derivative of Equation 7.10, yields

_l =
kX

i=1

[vi �mivi + ri �miai] (7.11)

ai being the acceleration of theith particle. The first term under the summation of
Equation 7.11 is a cross product of two parallel vectors, which is zero. Realizing that
miai is the force acting on theith particle, yields
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_l = next (7.12)

wherenext is the sum of external torques acting on the satellite. Equation 7.12 only holds
if the internal torques sum up to zero [Wertz, 1978]. An expression of the derivative of
the angular momentum in terms of the satellite’s angular velocity is sought, in order to
obtain the dynamic equation.

In the inertial ECI frame, denotedI, the angular momentum of the satellite can be
expressed as a function of the angular velocity! and the moment of inertia matrixJ of
the satellite, by

lI = J I! (7.13)

The values of the inertia matrixJ can be found in Annex I. Since the moment of inertia
is more conveniently expressed in the SCB frame, denotedB, the angular momentum
is found in the body frame. The attitude matrixAB

I , represents the rotation from the
inertial frame to the satellite body frame, which is used to represent Equation 7.13 in
the body frame, yielding

lB = AB
I l

I (7.14)

The derivative oflB is given by

_l
B
=

d
dt

�
AB

I l
I
�

= _A
B

I l
I +AB

I
_l
I

(7.15)

In order to obtain an expression for_A
B

I , consider the kinematic equation for rotating
systems, which for the angular momentum vectorl is

�
_l
I
�B

= _l
B
+ ! � lB

m
_l
B
=
�
_l
I
�B

� ! � lB (7.16)
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Since
�
_l
I
�B

= AB
I
_l
I
, combining Equations 7.15 and 7.16, gives

_A
B

I l
I = �! � lB
= �! � �AB

I l
I
�

(7.17)

Defining the cross product matrix function as

S(v) ,

2
4 0 �v3 v2
v3 0 �v1
�v2 v1 0

3
5 (7.18)

wherev is an arbitrary vector, Equation 7.17 is written

_A
B

I l
I = �S(!)AB

I l
I (7.19)

Since Equation 7.19 holds for alllI , the sought expression for the derivative of the
attitude matrix is

_A
B

I = �S(!)AB
I (7.20)

Inserting Equation 7.20 into Equation 7.15, gives

_l
B
= �S(!)AB

I l
I +AB

I
_l
I

(7.21)

Recalling from Equation 7.12, that the derivative of the angular momentum is the exter-
nal torques and applying the attitude matrix rotations in Equation 7.21, yields

_l
B
= �S(!) lB + nB

ext (7.22)

Finally the angular momentum is expressed in terms of the moment of inertia and the
angular velocity, as given in Equation 7.13. Solving with respect to_!, gives the sought
nonlinear differential equation, written in the form

_! = J�1 [next� ! � J!] (7.23)

where the superscript of frame is left out, since all vectors and matrices are given in the
SCB frame.
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Dynamics of Non-rigid Bodies

The dynamics given in Equation 7.23 only hold for rigid bodies. Since Rømer is
equipped with reaction wheels, the body is non-rigid. Because of the angular momen-
tum of the wheels, denotedm, the total angular momentum is given by

l = J! +m (7.24)

Using Equation 7.24 in the derivation of the dynamics above, yields

_! = J�1 [next� ! � [J! +m]� _m] (7.25)

where _m is the sum of the internal torques, generated by the momentum wheels. For
simplification, the net angular momentum and the external torques are assumed to be
negligible. The control torque of the wheelsnctrl, is defined as

nctrl = � _m (7.26)

hence the dynamic equation becomes

_! = J�1 [nctrl � ! � J!] (7.27)

7.3 System Equation

Combining the kinematic equation of Equation 7.9 and the dynamic equation of Equa-
tion 7.27, yields the non-linear differential equation

_x = f (x;u)

=

�
1

2

q (t)

J�1 [nctrl � ! � J!]
�

(7.28)

where

x =

�
q

!

�
(7.29)

u = nctrl (7.30)

defining the control torques as the input to the system.
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Chapter 8
Kalman Filters

This chapter describes the Kalman filters considered for the Rømer estimator. The chap-
ter is based on the theory of [Grewal and Andrews, 1993] and [Maybeck, 1982]. Kalman
filters are preferred, since they can incorporate noise information, to produce statistically
optimal estimates.

In order to estimate the state vectorx from the noise inflicted measurements, a Kalman
filter is designed. It is chosen to design a discrete-discrete Kalman filter, which can be
directly implemented in an embedded system, like the Rømer on-board computer. A
discrete-discrete filter uses a discrete model of the system with discrete measurement
updates, since it is based on a discretization of the continuous differential equation and
a discrete output equation.

The Kalman filter propagates a previous estimation of the states, using the state space
equations, and corrects the propagation using measurements. In the following sections,
the Kalman filter is described in general, followed by the derivation of a steady-state
Kalman gain. Finally an extended filter is designed, which includes gyro bias estima-
tion.

8.1 Linear Kalman Filter

The Kalman filter is based on a general state space description. For a discrete-discrete
filter, both the model differential equation and the output equation are discrete. The
model differential equation is written

xk+1 = �kxk + �kuk +wk (8.1)
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wherewk is a vector of random variables, representing the process noise, which is
assumed to be Gaussian white noise. The statistics ofwk are

E(wk) = 0 (8.2)

E
�
wkw

T
k+n

�
= Qk�(n) (8.3)

where E(wk) is the expected value function,�(n) is Kronecker’s delta function, and
Qk is the strength of the process noise. Note the shorthand

xk � x (kT ) (8.4)

whereT is the time period between samples.

The discrete output equation is written

zk =Hkxk + vk (8.5)

wherevk is a vector of random variables, representing measurement noise, assumed to
be Gaussian white noise with statistics

E (vk) = 0 (8.6)

E
�
vkv

T
k+n

�
= Rk�(n) (8.7)

whereRk is the strength of the measurement noise.

Starting with an estimate at time(kT ), denotedx̂k, the predictor of the filter calcu-
lates an a priori estimate using Equation 8.1. No noise is added since the expected
value is zero. The propagated estimate, denotedx̂�k+1, is an estimate of the state at
time (k + 1)T , based only on the dynamics described by the difference equation of the
system. Given the measurements at time(k + 1)T , zk+1, the a priori estimate can be
corrected into the a posteriori estimate at time(k + 1)T , denoted̂xk+1.

The covariance matrices of the a priori and a posteriori estimation errors at timekT , are
defined as

P�

k = E
��
xk � x̂�k

� �
xk � x̂�k

�T�
(8.8)

P k = E
�
[xk � x̂k] [xk � x̂k]

T
�

(8.9)
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The a priori estimate ofP is propagated using the difference equation

P�

k+1 = �kP k�
T
k +Qk (8.10)

derived in [Grewal and Andrews, 1993]. As with the state estimate, the a posteriori
covariance matrixP k+1 is obtained by correcting the a priori covariance matrixP�

k+1.
An illustration of the Kalman filter is given in Figure 8.1. Note that the closed loop
of the Kalman filter requires initial values of the state estimate and covariance of the
estimation error, denoted̂x0 andP 0 respectively.

x̂k+1

Predictor Corrector

P�

k+1

x̂�k+1

x̂0

P 0

x̂k P k P k+1

zk+1

Figure 8.1: Illustration of the Kalman filter.

The corrector of the filter updates the predicted estimates using the output equation of
Equation 8.5 and the measurement vectorzk. The update of the state estimate is given
by

x̂k = x̂�k +Kk

�
zk �Hkx̂

�

k

�
(8.11)

whereKk is the Kalman gain. The Kalman gain is calculated using

Kk = P�

kH
T
k

�
HkP

�

kH
T
k +Rk

�
�1

(8.12)

It is important to note from Equation 8.11, that the Kalman gain is a weight factor,
which weighs error in the measurement against the predicted state. From Equation 8.12
it is seen that ifRk approaches zero, the Kalman gain will increase. This results in a
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large update in Equation 8.11, which means that the new measurements are weighed
higher than the predicted state. IfP k approaches zero, the Kalman gain will decrease,
and the predicted state is weighed higher. WhenRk andP k increase, they will have the
opposite effects on the Kalman gain. These effects are in agreement with the expected,
when considering the interpretation ofRk andP k.

The corrector equation for the covariance matrix is

P k = P�

k �KkHkP
�

k (8.13)

whereKk is the Kalman gain of Equation 8.12. An alternate equation of the corrector,
which is numerically more stable, is [Maybeck, 1982]

P k = [1�KkHk]P
�

k [1�KkHk]
T +KkRkK

T
k (8.14)

8.2 Steady-State Kalman Gain

The Kalman filter requires the computation of a Kalman gain between each sample.
For linear time invariant systems, this gain will converge to a constant, named the
steady-state Kalman gain, which can be pre-calculated. In the following, the steady-
state Kalman gain is derived.

From Equation 8.12, it is seen thatKk varies with the covariance matrix prediction. For
time invariant systems,Hk andRk are constant, hence if a steady-state solution of the
covariance matrix can be found, this solution can be used to calculate the steady-state
Kalman gain.

In order to find the steady-state covariance matrix, denotedP1, the equations of the
predictor and corrector are combined.

The propagation of the covariance matrix is accomplished using the discrete model
equation of Equation 8.10. The corrector equation is a correction of the propagation,
which can be inserted directly Equation 8.10, as

P�

k+1 = � [P k �KkHP k]�
T +Q (8.15)

assuming that the process noise is constant for the time invariant system. Note that the
subscriptk is left out for the time invariant matrices.

The steady-state ofP will result in zero dynamics, which means that the propagation
equation ofP in Equation 8.15 results in an unchanged variance. Inserting Equation
8.12 in Equation 8.15, this property is written as
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P k = �

h
P k � P�

kH
T
�
HP�

kH
T +R

�
�1
HP k

i
�

T +Q (8.16)

assuming that the measurement noise is constant. Re-organizing Equation 8.16 gives

�P1�
T � P1 ��P1H

T
�
HP1H

T +R
�
�1
HP1�

T +Q = 0 (8.17)

Equation 8.17 takes the form of an Algebraic Riccati Equation. The solution to this
Riccati equation is the steady-state covariance matrixP1. The matrix is obtained using
the MATLAB function dare (Discrete Algebraic Riccati Equation), hence the analytic
solution will not be discussed in this project.

GivenP1 the steady-state Kalman gainK1 can be calculated using Equation 8.12,
giving

K1 = P1H
T
�
HP1H

T +R
�
�1

(8.18)

Recall thatH andR are time invariant, henceK1 can be calculated once, and used in
the corrector as a constant. The Kalman filter is then simplified to two equations. The
propagation of the state, using the discrete system model equation, and the corrector:

x�k = �xk�1 + �uk�1 (8.19)

x̂k+1 = x̂�k +K1

�
zk �Hkx̂

�

k

�
(8.20)

whereK1 is calculated using Equation 8.18. When the state error is converged, the
covariance of the state estimate isP1.

8.3 Extended Kalman Filter

The previous two filters are based on a linear model of the systems. When a system
is described by a non-linear model equation, the equations must be linearized around a
nominal state. If the nominal state is constant, then the previous filters can be applied
on the linearized system.

In some cases, however, a linearization around a single trajectory is inadequate, espe-
cially if it is not guaranteed that the state of the system is always close to the nominal
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values. In these situations an extended Kalman filter is applied, which re-linearizes the
system around the current estimate.

The non-linear system, is described by the differential equation

_x (t) = f (x (t) ;u (t) ; t) +w (t) (8.21)

wherew (t) is the continuous model noise. The continuous Gaussian white noise has
the statistics

E(w (t)) = 0 (8.22)

E
�
w (t)w (t + �)T

�
= Q (t) Æ (�) (8.23)

whereÆ (�) is Dirac’s delta function, andQ (t) is the noise strength. The non-linear
output equation is given by

zk = hk (xk) + vk (8.24)

wherevk is the measurement noise with the same statistics as in Equation 8.5.

Using a Taylor expansion of Equation 8.21 around a nominal trajectory�x and a nominal
input �u, yields

_x (t) =f (�x; �u; t) +
@f (x;u; t)

@x

����
x=�x;u=�u

+
@f (x;u; t)

@u

����
x=�x;u=�u

[u (t)� �u] + h.o.t.+w (t) (8.25)

where h.o.t. are the higher order terms. Considering the perturbation of the state from
the nominal trajectory, denoted~x = x (t) � �x and a perturbed input~u = u (t) � �u,
Equation 8.25 is written

_~x (t) =
@f (x;u; t)

@x

����
x=�x;u=�u

~x (t) +
@f (x;u; t)

@u

����
x=�x;u=�u

~u (t) +w (t) (8.26)

assuming that the higher order terms are negligible. An approximated linearized system
equation of the state perturbation can now be expressed as
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_~x (t) = F (�x; �u; t) ~x+G (�x; �u; t) ~u+w (t) (8.27)

whereF (�x;u (t) ; t) andG (�x; �u; t) are the Jacobians off (x;u (t) ; t) with respect to
the state and the input, given by

F (�x; �u; t) =
@f (x;u; t)

@x

����
x=�x;u=�u

(8.28)

G (�x; �u; t) =
@f (x;u; t)

@u

����
x=�x;u=�u

(8.29)

In a similar manner, a linear expression of the output equation in Equation 8.24 is found
to be

~zk =Hk (�x) ~xk + vk (8.30)

whereH (�x; t) is the Jacobian ofhk (xk), given by

Hk (�x) =
@hk (x)

@x

����
x=�x

(8.31)

The corrector equation is given by

~̂xk =Kk [zk � �z] (8.32)

where�z is given by

�z = hk (�x) (8.33)

The estimate of the state at timekT is then given by

x̂k = �x+ ~̂xk (8.34)

The covariance equations are the same as for the linear filter, using the linearized and
discretized matrices for� andH.
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Up to this point, the nominal state�x has been written as constant in time. This is the
form of a linearized filter. The difference to the extended filter is that the nominal state
is chosen to be the current estimate, hence all linearizations are done at each time step.
Obviously this is a computational disadvantage. However when the true state differs
significantly from the nominal state, e.g. in situations where a nominal trajectory may
not be determined in advance, re-linearization is necessary.

In the following the the equations of the linearized filter are summarized, but with a re-
linearization around the current estimate, hence the equations of the extended Kalman
filter are stated.

If the state estimate at time(k � 1)T is denoted̂xk�1, the system gradients are calcu-
lated around the estimate using

F (x̂k�1;uk�1; t) =
@f (x;u; t)

@x

����
x=x̂k�1;u=uk�1

(8.35)

H (x̂k�1; t) =
@h (x; t)

@x

����
x=x̂k�1

(8.36)

The nominal value of the input is chosen to be the last measured input. The calculation
ofG is left out, since the extended Kalman filter uses the non-linear differential equation
to propagate the state. HenceG is not used.

The state estimate is propagated one sampling period of timeT , from x̂k�1 to the a
priori estimatêxk of timek, using the non-linear differential equation

_x (t) = f (x (t) ;u (t) ; t) (8.37)

The propagation of the covarianceP k�1 of the estimatêxk�1 may be done using the
discrete equation

P�

k = �k�1 (x̂k�1;uk�1)P k�1�k�1 (x̂k�1;uk�1)
T +Qk�1 (8.38)

where�k�1 (x̂k�1;uk�1) is the the discrete equivalent ofF (x̂k�1;uk�1; (k � 1)T ).

The corrector equations which update the a priori estimatex̂�k and covarianceP�

k , are
given by

x̂k = x̂�k +Kk

�
zk � hk

�
x̂�k
��

(8.39)

P k =
�
1�KkHk

�
x̂�k
��
P�

k

�
1�KkHk

�
x̂�k
��T

+KkRkK
T
k (8.40)
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where the Kalman gainKk is calculated, using

Kk = P�

kHk

�
x̂�k
�T
h
Hk

�
x̂�k
�
P�

kHk

�
x̂�k
�T

+Rk

i
�1

(8.41)

These are the equations of the extended Kalman filter. In the case of Rømer, the equa-
tions simplify due to a linear output equation. These equations are shown in the next
chapter, where the filter used for the attitude estimate of Rømer is derived.
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Chapter 9
Rømer Estimator Design

This chapter describes the estimator designed for Rømer, based on the Kalman filters
described in the previous chapter. Some specific alternation to the theory is necessary,
due to the use of quaternions in the state. In addition the system model is expanded
to include gyro biases, in order to estimate them. The filter types used are discussed,
and different implementation strategies are considered, that deal with low frequency and
delayed star tracker measurement.

9.1 Choice of Filter

In the previous chapter, three Kalman filters were described. A linear filter, a linear filter
with steady-state Kalman gain, and an extended Kalman filter.

The linear filters can be applied if the non-linear system is linearized around a nominal
state, which is done analytically in Appendix C. The steady-state filter is derived be-
cause of its computational advantage. However when the true state diverges from the
nominal state, a re-linearization is necessary, which is done in the extended filter.

When Rømer operates in coarse mode, re-orientation of the satellite must be possible.
Hence the re-linearization is necessary, which suggests the use of an extended filter.
When the MONS Telescope has been pointed towards a target star, and the satellite
changes to fine mode, the state is close to the nominal trajectory. If it can be shown that
a linear filter can meet the requirements in fine mode, a steady-state filter is preferred,
in order to minimize the load of the on-board computer.

An advantage of this strategy, is that the on-board computer is loaded in coarse mode,
when no science is done. When fine mode commences, a steady-state filter frees com-
putation time for the science payload, which allows a larger number of parallel science
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to be executed.

9.2 Extended Kalman Filter Design

The extended Kalman filter is used to estimate the attitude and angular rate of the satel-
lite. In addition the gyro bias is included in the state. This improves the estimate of the
angular rate and thereby the attitude estimate. The system statex is defined as

x =

2
4q!
�

3
5 (9.1)

and the measurement vectorz as

z =

�
qm

!m + �m

�
(9.2)

Note that the gyro biases� are actually the sum of the bias and drift of the gyros, and are
defined in the direction of the body axes. Hence it is not the bias of each gyro which is
estimated. Instead the equivalent biases on the 1st, 2nd, and 3rd element of the angular
rate in the body frame are estimated.

The input vectoru is defined as

u = nctrl (9.3)

wherenctrl is the torque generated by the controller. Note that time dependency notation
is left out. The non-linear differential equation is

_x =

�
f (x;u)
03�3

�
(9.4)

where

f (x;u) =

�
1

2

q (t)

J�1 [nctrl � !s� J!s]

�
(9.5)

derived in Chapter 7. The dynamics of the gyro biases are zero, since the expected value
of the drift derivative is zero.
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The estimated measurementẑk is given by the output equation

ẑk =Hx̂k (9.6)

Note that the output equation is linear and time invariant. The matrixH is given by

H =

�
1 0 0

0 1 1

�
(9.7)

where the identity matrices1 and the zero matrices0 all are 3 by 3 matrices. The
resulting output estimate is

ẑ =

�
q̂

!̂ + �̂

�
(9.8)

Given the measurement vectorzk, the measurement residual~zk = zk� ẑk is calculated
using quaternion multiplication on the first four elements ofz and ẑ. The rotation~q
between the rotationsq andq̂ is given by

~q = qmq̂
� (9.9)

Hence the measurement residualẑk is in fact given by

~z =

�
qmq̂

�

!m � !̂ + �m � �̂
�
=

�
~q

~! + ~�

�
(9.10)

but the notation of the residual will still bezk � ẑk.
The measurement residual contains seven states, of the ten states in the system state
vector. A problem of the covariance arises when using four elements of the quaternion
in the state. Using four states for the quaternion causes the covariance matrixP to
be singular, [Lefferts et al., 1982]. In order to overcome this problem, the state of the
measurement residual is reduced by one dimension, by leaving out the scalar element of
the quaternion. Hence the residual measurement state vector reduces to the six states

�~z =

�
~q1:3
~! + ~�

�
(9.11)
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As a consequence, the covariance matrixP reduces to a9 by 9 matrix, containing the
covariance of only nine states of the state vectorx. The 10th state which is not included
is the quaternion scalar.

The correction term� ~̂xk, which is the correction of the a priori estimate, is calculated
using the corrector equation

� ~̂xk =Kk�~z (9.12)

where the Kalman gainK is calculated using the equation

K = P�HT
�
HP�HT +R

�
�1

(9.13)

Note that the reduction of the measurement state and the covariance matrix, results in
a reduced state correction vector. This vector is expanded to the ten states of the filter,
before updating the a priori estimatex̂�k .

The quaternion state of the state vector is expanded from three states to four states by
setting the fourth element to one, and normalizing the quaternion. This is done under
the assumption that the correction term� ~̂xk is small. Using small angle approximation
on the fourth element, yields the constant value of one. The expansion of the correction
vector is written as

~̂x =

2
66666664

~̂q1:3=

r
1 +

���~̂q1:3���2
1=

r
1 +

���~̂q1:3���2
~̂!

~̂�

3
77777775

(9.14)

The a posteriori estimatêxk is given by

x̂k = x̂�k + ~̂xk (9.15)

Due to the use of quaternions in the state, quaternion multiplication is used for the first
four elements of the state, as with the measurement residual. The rotation estimateq̂

given by the a priori rotation estimatêq� and a correction̂~q is calculated using

q̂ = ~̂qq̂� (9.16)
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Hence the a posteriori estimate is given by

x̂k =

2
64 ~̂qq̂�

!̂� + ~̂!

�̂
�

+ ~̂�

3
75 (9.17)

but the notation is left unchanged, as with the measurement residual.

A block diagram of the extended Kalman filter is given in Figure 9.1, showing the
propagator and the corrector using the reduced state.

H Reduce State

K

Expand State

Propagator

x̂

Corrector

ẑ ~z

z

� ~̂x

~̂x

�~z
x̂�

Figure 9.1: Block diagram of the state reduction and expansion in the corrector of the
extended Kalman filter.

The covariance is calculated using the linearized system matrixF , given by

F (x̂) =

2
4�S(!̂) 1

2
1 0

0 J�1 [S(J!̂)� S(!̂)J ] 0

0 0 0

3
5 (9.18)

derived in Appendix C. All matrices are3 by 3 matrices. The system is linearized
around the current estimate, and is used in the discrete equivalent, denoted�k (x̂k).
This matrix is used in the covariance propagation equation in Equation 8.38, and the
correction ofP is done using Equation 8.40. No changes apply, due the use of quater-
nions, except for the reduction from ten to nine states, causingP to be a9 by 9 matrix.
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9.3 Linear Steady-State Kalman Filter

The steady-state filter is a linear filter, hence the system is linearized around a nominal
state. In the extended filter, the nominal state is the current estimate, which varies in
time. In the steady-state filter, the nominal value is the reference of the controller, and
is constant.

When using a linear filter, the estimation of the gyro biases is left out, since the algebraic
Riccati equation has no solution. Instead, the estimated biases from the extended filter
in coarse mode may be applied in the linear filter. This solution only holds if the true
bias is close to the estimated bias, which is held constant in the linear filter, which must
be shown trough simulation.

Using a constant nominal state, yields the following linearized system matrix

F (�x) =

��S( �!) 1

2
1

0 J�1 [S(J �!)� S(�!)J ]

�
(9.19)

where�x is the nominal state. SinceF is constant, the covariance matrixP will converge
to a steady-state covariance, which can be calculated in the initialization of the filter, by
solving the algebraic Riccati equation in Equation 8.17. Given the solutionP1, the
steady state Kalman gainK1 is calculated using Equation 8.18.

Using the equations of the extended Kalman filter with the steady-state Kalman gain
and a reduced state vector, where the gyro biases are left out, yields the steady-state
filter used in fine mode. The equations of the covariance are left out in the steady-state
filter, since the steady-state covariance is the covariance of the state, after the filter has
converged.

The estimators given so far, do not handle the delay of the quaternion measurement by
the star trackers, and updates the attitude and angular rate estimates simultaneously. The
filters can be improved by updating the rate estimate faster than the limit of the attitude
update. These issues will be discussed in the following.

9.4 Multi-rate Filter

The filters designed in the previous sections make use of measurements from the star
trackers and rate gyros. As mentioned in Chapter 2, the CCD readout of the CHU takes
332ms. After the CCD readout, the attitude estimate is calculated, which delays the
measurement further. This means that the update of the filter can run at maximum2Hz,
assuming that the attitude calculation takes a minimum of170ms.

The gyros however can be sampled at a higher rate. This can be accomplished by a
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multi-rate filter, where the ordinary filter corrector is split into two parts. One for the rate
update, and another for the attitude update. Hence the rate estimate can be updated at
higher frequency, and when an attitude measurement is available, the attitude corrector
is used.

Instead of implementing two correctors, the standard filter can be used. When an attitude
estimate is unavailable, the measurement residual~z of the attitude is simply set to zero.
This will result that the correction is solely based on the angular rate measurement
residual. The calculation of the correction term of Equation 9.12 becomes

� ~̂xk =Kk

�
03�1

~!

�
(9.20)

The above can also be interpreted as using the estimate of the attitude as the measure-
ment, when a true measurement is unavailable, which will result in a measurement
residual of zero. By using this approach, all the equations of the filter are the same, with
the only difference that the measurement vectorzk contains the estimated attitude when
an attitude measurement is unavailable.

Since the attitude measurement is not used, because it is unavailable, the correction of
the covariance is

P k = P�

k �KHgP
�

k (9.21)

where

Hg =

�
0 0 0

0 1 1

�
(9.22)

In an implementation, the calculations where the attitude measurement residual is set to
zero, only the rate estimate equations of the corrector are calculated, i.e. implementing
two correctors. However, describing the multi-rate filter in a single equation, is an
advantage when handling the attitude measurement delay, discussed later in this chapter.

A different approach is to use a low pass filter on the gyro measurements, when pro-
vided to the Kalman filter. The bandwidth of the low pass filter, should be lower the
bandwidth of the system, including controller. This will minimize the noise on the gyro
measurement.

The choice of solution depends on the handling of the sensing delay of the star trackers.
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9.5 Sensing Delay

The delayed measurement of the attitude requires causes the update of the corrector to
be suboptimal, since the estimated output is different in time than the measurement.
Four solutions are considered in this section

� Measurement propagation

� Parallel re-calculation

� Delayed correction

� On demand estimation

The four algorithms are presented in the following.

Measurement Propagation

This method is based on a propagation of the measurement, to the time of the next
update. Figure 9.2 illustrates the time line of the events of the system. The controller
requires an estimate at timetk andtk+1 etc., which are separated in time byT seconds.
At time td, the filter receives a delayed attitude measurement representing the attitude
qm of the star tracker at timetm.

t
tk

T

tm td tk+1

x̂k+1x̂k qm,m

Figure 9.2: Time line of a delayed measurement within a single sample period of the
controller.

The delayed measurement can update the state in two different ways:

1. The statêxk is propagatedtm � tk seconds tôx�m, where it is updated with the
measurement to yield the a posteriori estimatex̂m. The a posteriori is then prop-
agatedtk+1 � tm seconds to timetk+1, resulting in the estimatêxk+1.

2. The measurementqm,m is propagatedtk+1 � tm seconds to timetk+1, which is
used to update the a priori estimatex̂�k+1 to the a posteriori estimatêxk+1.
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Of the two methods, the second method has proven to produce the best results in [Azor
et al., 2001]. If the measurement is delayed beyondtk+1, the measurement must be
propagated to the following update time after the time the delayed measurement is re-
ceived at timetd. The measurement should be propagated using the estimated angular
rate, at each sampling time of the controller. This means that the propagation ofqm,m

to qm,k+ 1 is done usinĝ!k. If td is beyondtk+1 then the measurement is propagated to
qm,k + 2 using!̂k+1. In other words, the best estimate of! is always used to propagate
q.

Note that this algorithm does not handle the update ofx̂�k+1 in the absence ofqm in
case it is delayed beyond the sampling timetk+1. This can be accommodated using the
multi-rate filter discussed in the previous section.

Parallel Re-calculation

The idea of the parallel re-calculation algorithm is to re-calculate the filter estimates,
from the time where the delayed measurement should have been incorporated. Since
this is a time consuming process, it is done in a parallel process, until the re-calculated
estimate is ready, at which point it is used in the filter. The algorithm is designed for the
multi-rate filter, where the rate estimate is updated faster that the attitude estimate.

Figure 9.3 illustrates the time line of the events in the algorithm.

t
tk tk+1 tk+2 tk+3 tk+5 tk+6tm

x̂k x̂k+1 x̂k+2 x̂k+3 x̂k+4 x̂k+5 x̂k+6

td

x̂0k+1 x̂
0

k+2 x̂
0

k+3 x̂
0

k+4 x̂
0

k+5

tk+4

qm,m

!m,k !m,k+ 1 !m,k+ 2 !m,k+ 3 !m,k+ 4 !m,k+ 5 !m,k+ 6

Figure 9.3: Illustration of the parallel re-calculation algorithm time line.

It is seen in Figure 9.3 that at each sampling pointtk+i; i = 0::6, the gyro measurement
!m,k+ i is used to update the a priori estimate, to produce the a posteriori estimatex̂k+i.
At time td a delayed attitude measurement is received by the filter, which was measured
at timetm, denotedqm,m.

The filter has already updated the estimate at timetk+1 and tk+2. A parallel process
is initiated, in which the updates are recalculated, from the timetk+1 where the mea-
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surement would have been incorporated, if no delay had occured. The parallel process
calculates estimates up tôx0k+5 at which time the estimate is passed, and used in the pri-
mary filter. Note that the parallel process does not need to run realtime, hence it catches
up with the primary filter.

The update at timetk+1 is accomplished using the measurement propagation algorithm.

The algorithm suffers from computational overload, because two filters are run parallel
in some time intervals. An alternative to executing two filters, is using update correction.

Update Correction

The update correction algorithm updates the estimate following the delayed measure-
ment, by correcting for the error in the estimate, caused by the delayed update. The al-
gorithm spawns from [Alexander, 1991]. Figure 9.4 illustrates the time line of a delayed
and an undelayed estimate. The delay time has been minimized in order to simplify the
equations.

tk tk+2tm

tk tk+1 tk+2tm

x̂k

td

x̂k x̂k+2x̂k+1

x̂0k+2x̂0k+1

t

t

tk+1

!m,k !m,k + 2!m,k + 1

!m,k !m,k + 2!m,k + 1

qm,m

Figure 9.4: Illustration of the update correction algorithm time line (below), compared
to an undelayed timeline (above).

It is seen from Figure 9.4 that the measurementqm,m is received after timetk+1. The
parallel re-calculation algorithm would restart the calculation of the estimates, starting
from x̂k+1. The estimatêxk+2 is the correct estimate to be used at timetk+2. The idea of
the update correction algorithm is to calculate the estimatex̂k+2 using the measurement
qm,m at timetk+2, and then correcting the update withx̂k+2 � x̂0k+2, giving
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x̂k+2 = x̂0k+2 +
�
x̂k+2 � x̂0k+2

�
(9.23)

The measurementqm,m is propagated to timetk+1, yieldingqk+1 regardless of the delay
time. If the measurement was incorporated in the estimatex̂k+1, the estimatêxk+2

would have been given by

x̂k+2 =x̂
�

k+2 +Kk+2

�
zk+2 �Hx̂�k+2

�
= [1�Kk+2H] x̂�k+2 +Kk+2zk+2

= [1�Kk+2H] [�x̂k+1 + �uk+1] +Kk+2zk+2

= [1�Kk+2H]
�
� [1�Kk+1H] x̂�k+1 +�Kk+1z

0

k+1 + �uk+1

�
+Kk+2zk+2 (9.24)

Note thatz0k+1 is the full measurement

z0k+1 =

�
qm,k+ 1

!m,k+ 1

�
(9.25)

since attitude measurement was assumed available, and propagated to timetk+1. The
measurementzk+2 contains the estimated attitude, as it is explained in the multirate
filter, giving

zk+2 =

�
q̂k+1
!m,k+ 1

�
(9.26)

which will result in the residual of Equation 9.20. Note that the state reduction and
expansion in Equation 9.24 has been disregarded in order to simplify notation. This will
persist throughout the section.

Equation 9.24 gives the estimate at timetk+2 assuming the measurementqm,k+ 1 is
used at timetk+1. Due to the delay of the measurement it cannot be used at timetk+1.
The estimatêx0k+2 of time tk+2, disregarding the measurement update at timetk+1, and
instead using the attitude estimate at both timestk+1 andtk+2, yields
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x̂0k+2 =
�
x̂0k+2

�
�

+K 0

k+2

h
zk+2 �H

�
x̂0k+2

�
�

i
=
�
1�K 0

k+2H
� �
x̂0k+2

�
�

+K 0

k+2zk+2

=
�
1�K 0

k+2H
� �
�x̂0k+1 + �uk+1

�
+K 0

k+2zk+2

=
�
1�K 0

k+2H
� h
�
�
1�K 0

k+1H
� �
x̂0k+1

�
�

+�K 0

k+1zk+1 + �uk+1

i
+K 0

k+2zk+2 (9.27)

The Kalman gains in Equation 9.24 and 9.27 differ, due the update of the covariance
P at timetk+1, when the attitude measurement is assumed available. However if the
covariance matrix is updated at timetk+1, as if an attitude measurement was available,
the Kalman gainsK 0 are equal toK. The difference between the two equations, which
is the effect of not updating with a measurement at timetk+1, becomes

x̂k+2 � x̂0k+2 = [1�Kk+2H]�Kk+1

�
z0k+1 � zk+1

�
= [1�Kk+2H]�Kk+1

�
qm,k+ 1 � q̂k+1

0

�
(9.28)

realizing that

�
x̂0k+1

�
�

= x̂�k+1 (9.29)

since the a priori estimates are a propagation ofx̂k, which is not influenced by the
measurement at timetm.

This update correction can be calculated if the estimate at timetk+1, and the following
Kalman gains are saved. The time of measurementtm is known, hence the filter knows
when to start saving the estimate and Kalman gains.

The disadvantage of the algorithm is, that the covariance of the state estimate is wrong
at time tk+1, since the covariance must be updated as if an attitude measurement is
available. When the measurement is used at timetk+2, the covariance is true. Since
the covariance of the estimate is used to ensure the pointing performance, this yields a
problem. If the filter is to be used in fine mode, in case the steady-state filter is inap-
plicable, the covariance is used to change from fine to coarse mode, when the estimate
cavariance increases above a thershold.

However, since the covariance of the estimate is independent of the actual measurement,
and only of the time of measurement update, the maximum delay time allowed, can be
found through simulation or pre-calculation.
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If simulations show that a maximum delay time oftmd is allowed, in order to keep the
covariance of the estimate below the threshold needed to stay in fine mode, change to
coarse mode can be based on the observed delay time of the measurement instead of the
covariance. The delay time from the measurement is executedtm to the measurement is
incorporated in the filtertd must be belowtmd, or else the mode is changed to coarse.

The general equation of the update correction term~xk+d, given an arbitrary delay time
d, is given by

~xk+d =
dY

i=2

(1�Kk+iH)�d�1Kk+1

�
qm,k + 1 � q̂k+1

0

�
(9.30)

assuming that the measurement was executed between timetk andtk+1, and received in
time for incorporation at timetk+d.

On Demand Estimation

The on demand estimation algorithm, simplifies the problem of sensing delay from a
design point of view. As a consequence the implementation of the algorithm requires
more design analysis.

The algorithm saves all measurement available between two controller sample points,
and then calculates the estimate in time before the next sample point of the controller.
Figure 9.5 illustrates the time line of events.

tk tk+1 tk+2tm td

x̂k+2

tk+3

t

!m,k !m,k + 2

qm,m

!m,k + 1 !m,k + 3

Figure 9.5: Illustration of the on demand estimation algorithm time line, with a short
measurement delay.

The measurements received by the filter at timestk, tk+1, and the delayed measurement
at timetd, are saved in the filter. Note that no estimates are calculated at timestk and
tk+1. If the controller requires an estimate at timetk+2, the estimator initiates the cal-
culation of the estimate just before timetk+2, using the measurements received. In this
way, the measurementqm,m can be incorporated as if no delay occurred. The disad-
vantage of the algorithm is, that the implementation requires the execution time to be
known, in order to initiate calculation in time for completion at timetk+2.
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The example given in Figure 9.5, illustrates a delay, which does not influence the esti-
mate, because the measurement can be incorporated at the time the controller requires
an estimate. If the delay time increases, this cannot be done. Consider the extended
delay time in Figure 9.6. The measurement is delayed beyond the timetk+2, where the
controller requires an estimate. Hence the measurement cannot be used in the estimate
of x̂k+2.

tk tk+1 tk+2tm

x̂k+2

tk+3

t
td

!m,k !m,k+ 2

qm,m

!m,k+ 1 !m,k+ 3

Figure 9.6: Illustration of the on demand estimation algorithm time line, with an ex-
tended measurement delay.

This problem can be solved by using measurement propagation, as discussed in the
above. The measurement at timetm is propagated to timetk+3, where it will be incor-
porated when calculating the next estimate for the controller.

Comparison of Algorithms

Four algorithms were discussed in the previous sections. This section summarizes the
advantages and disadvantages of the algorithms, and based on design criteria, the pre-
ferred solution is derived.

The design criteria of the estimator, is a trade of between accuracy and computational
load. If accuracy requirements are met, a less complex filter can be considered in order
to free computation time for other tasks on the on-board computer. Table 9.1 shows
the algorithms evaluated wrt. these criteria. In addition the implementation possibilities
are stated. Multi-rate / single-rate implies that the algorithm could be implemented in a
single rate filter, possibly using a low pass filter on the rate estimate, as discussed in the
multi-rate filter section.

Obviously the algorithm using most computation time is the parallel re-calculation algo-
rithm. In return the estimate suffers no loss in estimate accuracy due to the measurement
delay. The measurement propagation algorithm uses a minimum computation time. The
on demand algorithm uses the same amount, but in large chunks at a lower frequency,
since it starts calculation just before an estimate is needed. If the delayed measure-
ment arrives before the estimate calculation, the on demand algorithm estimate has no
accuracy loss. If the measurement is delayed beyond the point of calculation, the mea-
surement is propagated, suffering from the same loss of accuracy as the measurement
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Algorithm Implementation Computation Accuracy
Measurement PropagationMulti-rate / Single-rate Low Low
Parallel Re-calculation Multi-rate High High
Update Correction Multi-rate Medium High
On Demand Multi-rate / Single-rate Low Medium

Table 9.1: Filter algorithms evaluated with respect to design criteria.

propagation algorithm. Using measurement propagation clearly decreases the accuracy
of the estimate, since the measurement is influenced by the error of the rate estimate,
which is used for the propagation. Based on this, the on demand algorithm is preferred
to the measurement propagation, since the on demand algorithm only propagates when
it is necessary.

A compromise between the parallel re-calculation and the on demand algorithm, is the
update correction, which corrects for the delayed update, at the cost of an extra compu-
tational load. This load, however, is significantly smaller than the parallel re-calculation,
since no propagation is needed. The estimate is not influenced by the delayed measure-
ment, instead the covariance is at some points out of synchronization. This happens
between the time the measurement is carried out, and the time it is received.

The update correction is preferred to the parallel re-calculation, since the update cor-
rection algorithm requires less computation, at no cost of the estimate accuracy. This
leaves the update correction and the on demand algorithm. The choice of algorithm
should be based on the performance of the estimator. If the accuracy of the estimate is
far better than the requirements, the on demand algorithm should be evaluated, possibly
with a low pass filter on the rate, instead of using a multi-rate filter. If requirements are
not met, the update correction algorithm is preferred.
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Part IV

Simulation
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Chapter 10
Implementation

This chapter gives an overview of the SIMULINK implementation of the multi-rate and
steady state estimators.

10.1 Multi-rate Kalman Filter

The main system of the multi-rate estimator block is shown in Figure 10.1.
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Figure 10.1: Multi-rate Kalman filter subsystem block.

The algebraic loop of the system, is broken in the unit delay blocks. The initial values of
the estimatêx0 and covarianceP 0 are output of the delay blocks when the simulation
starts.

The propagator uses the the current estimate and the control input to propagate the

107
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estimatex̂k and covarianceP k to the a priori valueŝx�k+1 andP�

k+1. The propagator
block is shown in Figure 10.2.
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Figure 10.2: Multi-rate non-linear Runge-Kutta 10 state propagator subsystem block.

The integrator block of SIMULINK is not applicable in the extended Kalman filter, due
to its behavior upon reset, hence a Runge-Kutta propagator has been implemented. The
non-linear differential functionf (x̂k) is linearized and made discrete in thePHIsys_lin
block, which gives the transition matrix� (x̂k). The transition matrix is used to prop-
agate the covariance. The bias is simply passed through the propagator block, since it
has zero dynamics.

The a priori values are used in the corrector block, together with the measurement vec-
tor zk, which contains the noise simulated by the star tracker and gyro models. The
corrector block is shown in Figure 10.3.

Theselectblock, seen in Figure 10.3, is used in the multi-rate corrector to change the
measurement ofq from the estimatêq and the actual measurement. Recall that when
the attitude measurement is unavailable, the estimate is used to produce a measurement
residual of zero. Theselect1block outputs theHg when attitude measurement is un-
available, andH when available.

Note also that the state is reduced in the corrector by thelarge2small 10 stateblock.
After the correction, the state is expanded in thesmall2large 10 stateblock.

10.2 Steady-state Kalman Filter

The steady-state Kalman filter is shown in Figure 10.4. The layout is the same as the
multi-rate filter, except that the covariance is left out of the loop, since it is constant.
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Figure 10.3: Multi-rate quaternion 10 state corrector subsystem block.
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Figure 10.4: Steady-state Kalman filter subsystem block.
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The propagator is shown in Figure 10.5.
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Figure 10.5: Steady-state non-linear propagator subsystem block.

Using� (�x) for the propagation of̂x proved inapplicable. Instead the Runge-Kutta
propagator block from the multi-rate filter is used. This requires more computation, but
an advantage is, that the filter is not limited to states close to the nominal value�x.

Note that the propagation of the covariance is not necessary, since the steady-state value
is calculated in the corrector block. The corrector block is shown in Figure 10.6.

2

P

1

x

Nom

Small True

small2largel

True

Nom Small

large2small

Step

A

B
A*B

Matrix
Product

ssKg

P

Discrete
Steady−state
Kalman Gain

2

x−

1

z

Figure 10.6: Steady-state corrector subsystem block.

The Discrete Steady-state Kalman Gainblock calculates a steady-state Kalman gain,
based on the steady-state covariance, which is a solution to the discrete algebraic Riccati
equation in Equation 8.17. The block is only enabled in the first sample of the simula-
tion, hence the computation of the Kalman gain is executed once, and used throughout
the simulation.

Note that the measurement vectorz, which is input to the block, is subtracted by the
estimated biases from the multi-rate filter. The steady-state filter does not estimate the
bias, hence the multi-rate filter has to do this, before the steady-state filter is used. This
requires that fine mode is only entered from coarse mode. Recall Figure 3.2, where the
pre-defined modes and transitions of Rømer are illustrated. It is seen that fine mode can
be entered from standby mode. Either bias estimation must be done in standby mode,
or transition three should be removed, such that fine mode is only entered from coarse
mode. In this way, the bias estimates will always be available for the steady-state filter
in fine mode.
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10.3 Model and Measurement Noise Strength Matrices

The Kalman filters rely on the knowledge of the model noise strengthQ and measure-
ment noise strengthR. The performance of the Kalman filters are only optimal under
the assumption thatQ andR reflect the true behavior of the noises.

The measurement noise strength is found by simulating the noise models of the star
trackers and gyros. The output noise strengths are inserted as the diagonal elements of
R, resulting in

R =

�
1:2� 10�5 � 1 0

0 0:02� 1

�
(10.1)

where all matrices are3 by 3.

The Kalman filters assume that the measurement noise is zero-mean white noise. This
is not the case of the gyro noise, since the measurement is biased. Instead the strength
of the gyro measurement noise is set to a value which includes the bias value.

The model noise strength is more difficult to estimate, since the effect of disturbances
has not been analyzed. The kinematic equation of the attitude is not influenced by error,
hence the modeling noise of the quaternion is set to zero. The bias is modeled as zero
dynamics. The noise model changes the measurement noise with the drift rate, which
has a deviation of0:0002rad=s2. The model noise strength of the rate is assumed to be
in the order of10�6, and the error is modeled as such, by adding white noise to the true
state of the system. These considerations result in a modeling noise strength of

Q =

2
40 0 0

0 10�6 � 1 0

0 0 2� 10�5 � 1

3
5 (10.2)

where all matrices are3 by 3.

Adding white noise to the true state of the system, and using the observed noise strengths
from the noise models inQ andR improves the simulated performance of the estima-
tors, which should be considered when evaluating the results.

10.4 Sensing Delay

The update correction algorithm has not been implemented in this project. The perfor-
mance of the estimator may still be evaluated, since the update algorithm ensures that
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the estimate is unaffected, once the measurement is received and incorporated in the
estimate.

The effect of the delay time is analyzed by changing the interval of which the attitude
update is done in the estimators.

The performance of the estimators is presented and discussed in the following chapter.



Chapter 11
Results

In this chapter the results of the SIMULINK simulations are presented and discussed.
First the implementations are verified by showing their ability to converge from an initial
estimate, which is different from the true state of the system. The multi-rate and steady-
state filters have been tested in a static and dynamic environment, in order to evaluate
their performance. The results are evaluated wrt. the system requirements in Chapter 4.

All simulations have been conducted in open loop, i.e. no controller is implemented.
The behavior of the satellite is done by setting an initial attitude and angular rate of the
satellite model. The model in the Kalman filters likewise need initial values. The initial
conditions for the true state simulation are denotedq0 and!0, andq̂0 and!̂0 for the
filters. The equivalent state vectors arex0 andx̂0, respectively, where the bias estimate
is denoted̂�0.

11.1 Verification

The purpose of the verification is to see if the estimation error converges from an initial
value, which is non-zero. The filters have been simulated in equal environments, where
the satellite is simulated as static. The initial estimates are chosen to be significantly
different from the true state. The simulation parameters are stated in Table 11.1.

The result of the multi-rate Kalman filter is shown in Figure 11.1, and the result of the
steady-state Kalman filter in Figure 11.2. The estimation errors ofq and! are denoted
q̂� and!̂�, respectively.

The results of the verification simulations show, that both filters are able to estimate
the state of the system, from initial values which are different from the true state. Both
filters have converged after approximately100s. The multi-rate filter is faster to correct
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Symbol Value

q0 [rad] [0 0 0 1]T

!0 [
Æ=s] [0 0 0]T

q̂0 [rad] [0:4082 0:4082 0:4082 0:7071]T

!̂0 [
Æ=s] [0:5 0:5 0:5]T

�̂0 [
Æ=s] [0 0 0]T

Table 11.1: Simulation parameters of the verification of multi-rate and steady-state fil-
ters.
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Figure 11.1: Verification result of the multi-rate Kalman filter.
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Figure 11.2: Verification result of the steady-state Kalman filter.

the estimate than the steady-state filter. This is an advantage of estimating the covariance
on-line.

11.2 Multi-rate Kalman Filter

The performance of the filters in static and dynamic environments are investigated. The
results are presented in the following.

Static Simulation

The parameters of the static simulation are listed in Table 11.2.

The result of the static simulation is shown in Figure 11.3. The result is plotted in terms
of the Euler angles, in order to compare them with the system requirements.

The mean and RMS values of the Euler angle errors are listed in Table 11.3. The values
are calculated from time100 and out, to ensure that the filter is in steady-state. This is
consistent for all the following calculations of mean, RMS, and RSS values.

The mean and RSS values for the attitude and rate estimation errors are listed in Table
11.4, together with the equivalent values of the measurement vector.

It is seen from the results, that the attitude estimation RSS error is improved from2:4as
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Symbol Value

q0 [rad] [0 0 0 1]T

!0 [
Æ=s] [0 0 0]T

q̂0 [rad] [0 0 0 0]T

!̂0 [
Æ=s] [0 0 0]T

�̂0 [
Æ=s] [0 0 0]T

Table 11.2: Parameters of the static simulation for the multi-rate Kalman filter.
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Figure 11.3: Results of the static simulation of the multi-rate Kalman filter.

Euler Angle Mean [as] RMS [as]
Pitch 1:0 0:27
Yaw 0:59 0:27
Roll 7:3 1:7

Table 11.3: Mean and RMS values of the Euler angle error from static simulation with
multi-rate Kalman filter.
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Vector Mean RSS
Estimates

q̂ �1:1as 0:85as
!̂ 0:003as=s 0:13as=s

Measurements
qm �1:1as 2:4as
!m 1800as=s 29as=s

Table 11.4: Mean and RSS values of the estimate and measurement errors from static
simulation with multi-rate Kalman filter.

to 0:85as. The bias in the attitude estimate is caused by the bias of the measurement.
It should be considered to estimate this bias, if improved performance is required. This
has not been included in this project.

The rate RSS error is improved from29as=s to0:13as=s. The bias in the measurement
is estimated. As a result the mean value of the estimate is almost zero, compared to the
measurement mean.

The covariance estimate is also investigated. Figure 11.4, shows a plot of the error inq̂1
and!̂1 with a 2-sigma confidence contour. The sigma value ofq̂�;1 is calculated from
the covarianceP , by

�q̂�;1 =
p
P1;1 (11.1)

whereP1;1 is the element at the1st row and1st column ofP .

It is seen that in spite the0:85as RSS value of̂q�, the estimated 2-sigma value is at
approximately600as. This implies an error in the estimation of the state covariance,
which has not been solved by the deadline of this project. The error is also found in the
steady-state filter. The covariance of the steady-state filter is however smaller, which
results in a better performance of the steady-state filter. The problem could be caused
by the gyro bias. In order to include this noise source in the filter, the measurement
noise strength of the gyro is increased to include the bias. This actually represents a
zero mean Gaussian noise with a large deviation, which does not reflect the behavior of
the gyro measurement noise.

In the steady-state filter, the bias is subtracted before the measurement is used in the
filter, hence the measurement noise strength is set to the deviation of the noise, excluding
bias.

The covariance analysis is left out in the remaining simulations, due to this problem.
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Figure 11.4: Estimation error of̂q1 and!̂1 with 2-sigma confidence contour.

Dynamic Simulation

In order to investigate the performance of the estimator in a worst case situation wrt.
measurement noise, a dynamic simulation is performed, where the satellite is rotated at
constant angular velocity. The parameters of the dynamic simulation are listed in Table
11.5.

Symbol Value

q0 [rad] [0 0 0 1]T

!0 [
Æ=s] [5 5 5]T

q̂0 [rad] [0 0 0 0]T

!̂0 [
Æ=s] [5 5 5]T

�̂0 [
Æ=s] [0 0 0]T

Table 11.5: Parameters of the dynamic simulation for the multi-rate Kalman filter.

The results of the simulation are shown in Figure 11.5, and the RMS values of the Euler
angle errors are listed in Table 11.6.

The mean and RSS values of the estimates and measurements are listed in Table 11.7.

The accuracy of the estimate is decreased, which is expected. This is due to the increased
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Figure 11.5: Results of the dynamic simulation of the multi-rate Kalman filter.

Euler Angle Mean [as] RMS [as]
Pitch 0:89 3:0
Yaw 0:81 3:8
Roll 2:4 18

Table 11.6: Mean and RMS values of the Euler angle error from dynamic simulation
with multi-rate Kalman filter.

Vector Mean RSS
Estimates

q̂ �0:56as 8:0as
!̂ 0:29as=s 2:28as=s

Measurements
qm �0:25as 21as
!m 1976as=s 755as=s

Table 11.7: Mean and RSS values of the estimate and measurement errors from dynamic
simulation with multi-rate Kalman filter.
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measurement noise. The RSS error of the attitude is improved from21as to8as, and the
rate RSS from755as=s to0:29as=s.

11.3 Steady-state Kalman Filter

The static and dynamic simulations are repeated with the steady-state Kalman filter, and
the results are presented in the following. The measurement of! is subtracted by the
estimated biaŝ� of the multi-rate Kalman filter, which is

�̂ =

2
40:008510:00850
0:00850

3
5 as=s (11.2)

The plots of the simulation results are left out, as the behavior of the errors reflect the
previous cases.

Static Simulation

The initial parameters of the static simulation are the same as in the multi-rate simula-
tion, and listed in Table 11.2. The mean and RMS values of the Euler angle errors are
listed in Table 11.8. The mean and RSS values of the estimates and measurements are
listed in Table 11.9.

Euler Angle Mean [as] RMS [as]
Pitch 0:14 0:17
Yaw �0:34 0:28
Roll 6:6 1:1

Table 11.8: Mean and RMS values of the Euler angle error from static simulation with
steady-state Kalman filter.

The RSS of the attitude error is improved from2:4as to0:58as, and the RSS of the rate
error from85as=s to2:4as=s.

Dynamic Simulation

The initial parameters of the dynamic simulation are given in Table 11.5. The results of
the simulation are listed in Tables 11.10 and 11.11.
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Vector Mean RSS
Estimates

q̂ �0:80as 0:58as
!̂ 0:04as=s 0:054as=s

Measurements
q �1:1as 2:4as
! 1802as=s 85as=s

Table 11.9: Mean and RSS values of the estimate and measurement errors from static
simulation with steady-state Kalman filter.

Euler Angle Mean [as] RMS [as]
Pitch 293 759
Yaw �287 628
Roll �276 1561

Table 11.10: Mean and RMS values of the Euler angle error from dynamic simulation
with steady-state Kalman filter.

Vector Mean RSS
Estimates

q̂ 17as 818as
!̂ �43as=s �0:39as=s

Measurements
q �43as 19as
! 1965as=s 313as=s

Table 11.11: Mean and RSS values of the estimate and measurement errors from dy-
namic simulation with steady-state Kalman filter.
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It is seen that the steady-state filter in a dynamic environment, is unable to estimate the
state of the system, with an acceptable accuracy. The accuracy of the raw measurement
data is better than the estimate. This is of no consequence, as the filter is only to be used
in fine mode, where the satellite is in a near static environment.

11.4 Relative Pointing

The relative pointing error requirements are shown in Figure 4.1. In order to verify the
steady-state estimator, the PSD of the pitch and yaw errors have been plotted, shown in
Figure 11.6.
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Figure 11.6: PSD of the pitch and yaw errors.

It is seen that the relative pointing error of the filter, is well within the requirements.

11.5 Sensing Delay

The effect of delaying the measurement of the attitude, is investigated, by sampling the
steady-state Kalman filter at different rates. The steady-state filter only estimates the
attitude and rate, when the attitude measurement is available.

The previous simulations used an attitude measurement every second. The time between
each attitude measurement, called the measurement period, is set to2s, 3s, 5s, and
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10s. Table 11.12 shows the results of the pitch/yaw and roll errors for different . The
simulation was executed in a static environment.

Measurement Period[s] Pitch/Yaw RSS[as] Roll RMS [as]
2 1:4 3:2
3 3:0 3:5
5 5:1 4:3
10 8:6 7:9

Table 11.12: Pitch/yaw error RSS and roll error RMS from the varying measurement
period simulations.

The pitch of the relative pointing is investigated. Figure 11.7 shows the results from the
simulations.
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Figure 11.7: PSD of the pitch error in variable measurement period simulations.

It is seen from Figure 11.7 that the relative pointing requirements are met with smaller
margin, when the time between updates increases. With a measurement period of10s
the relative pointing requirement is met with a small margin. As mentioned earlier, the
model and measurement noise matrices reflect the true noises of the simulation. Since
this will not be the case in the real-life implementation, the results simulated results
are better, than is expected in the real-life. Hence some margin to the requirements is
wanted.
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The star tracker measurements consume CPU time. The measurement period should be
adjusted in the controller design, in order to free CPU time, while still meeting the ACS
requirements. It is suggested that the measurement period should be no higher than
approximately5s.

The simulation results of the two filters in static and dynamic environments are summa-
rized and discussed in the following section.

11.6 Discussion of Results

The results of the simulations must be compared with the system requirements in Chap-
ter 4. The attitude results of the multi-rate Kalman filter in dynamic environment, and
the steady-state Kalman filter in static environment are listed in Table 11.6. The RSS
values are specified by a pitch/yaw RSS value and a roll RMS value.

Filter Multi-rate Steady-state
Pitch/Yaw Roll Pitch/Yaw Roll

Mean [as] 0:85 2:4 �0:10 6:6
RMS/RSS[as] 4:8 18 0:33 1:1
System Requirements 15Æ 15Æ 2am 60am

Table 11.13: Mean and RMS/RSS values of the Euler angle estimation error from the
dynamic multi-rate filter simulation, and the static steady-state filter simu-
lation.

It is seen that the that the estimated errors are well within the requirements of the system.
The multi-rate filter has4:8as in pitch/yaw and18as in roll, where a coarse pointing of
15Æ is required. The steady-state filter has0:33as in pitch/yaw and1:1as. where the re-
quirements state2am for pitch/yaw and60am for roll. The mean values should be added
to the RMS/RSS values, however these are negligible compared to the requirements.

The delay in measurement cause the accuracy of the estimate to decrease. Due to the
relative pointing requirements, the measurement period of the attitude should be no
higher than approximately5s.

Figure 11.6 shows that the steady-state filter fulfills the requirements of relative point-
ing. Hence it can be concluded that the estimators are applicable for the Rømer ACS.

The requirements in coarse mode of15Æ implies that the use of a multi-rate Kalman
filter is unnecessary. However the multi-rate estimator is necessary in order to estimate
the gyro bias, and to ensure that the initial estimate for the steady-state filter is close to
the true state of the system.
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Chapter 12
Conclusion

It was the main goal of this project to design an attitude estimator for the Rømer satellite.
The estimator is to be incorporated in the ACS system designed at Aalborg University
in cooperation with Danish Technical University. The estimator should be implemented
in SIMULINK , in order to be used with the ACS simulation model.

In order to test the simulation, noise models of the sensors were developed. A detailed
star tracker noise model was derived and implemented in SIMULINK . The kinematic
and dynamic equations of satellite motion were derived, and used to simulate the ro-
tation of Rømer. From the modeled satellite rotation, the gyro and star tracker noise
models, calculated measurement noise contributes, which were input to the estimators.

The noise models of the hardware were tested, and produced reasonable results. The
star tracker noise model, produces an attitude measurement which is better than the
night sky test performed by Terma. The number of stars in the night sky test was not
observed, hence the results are not fully comparable. Further real-life tests should be
conducted to fit the star tracker noise model, and to verify the simulations results.

The results of the gyro noise model, are in agreement with the hardware specifications.
No real-life test results were available for comparison. These test should be conducted,
in order to verify the noise model.

The purpose of the estimator is to filter noise of the measurements. It was chosen to
focus on Kalman filters, as they include noise information to produce optimal estimation
results. Preliminary considerations suggested that a multi-rate Kalman filter should be
used in coarse mode, when computation time was not limited by science calculations.
A steady-state filter was proposed for the fine mode, in order to minimize computation.
This would free the on-board computer for parallel science observations.

An algorithm for handling attitude measurement delays were derived. A number of
algorithms were presented, and the update correction algorithm was suggested. The
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algorithm was not implemented in the time frame of this project. The performance
of the estimators could still be investigated with liability, since the update correction
algorithm cancels the effect of delays, once the measurement is received. Instead the
effect of measurement delays were investigated.

The simulation results proved that the suggested filters were well within the require-
ments of the ACS system. The coarse mode estimator produced result which were far
better than the results, implying that a simpler algorithm could be applied. However, the
results of the fine mode estimator relies on the accurate estimation of the gyro biases,
which are achieved by the multi-rate estimator in coarse mode.

The multi-rate filter was tested in a dynamic environment, where the satellite was tum-
bling with 5Æ=s about all three axes, and the RSS value of the pitch and yaw errors were
4:8as and18as for roll.

The results of the covariance estimates were very high compared to the variance of the
estimate error, implying an implementation error in the covariance estimate, which was
not solved within the time frame of this project. It was suggested that the cause was
due to the non-zero mean of the gyro measurement noise, which is inconsistent with the
assumptions of the filter design.

The steady-state Kalman filter was tested in a static environment, where the rate was
zero, and the RSS of the pitch and yaw errors were0:33as and1:1as for the roll. The
power spectrum was plotted to verify the relative pointing requirement. The result was
within the ACS requirement. In addition it was shown that the measurement period of
the attitude should be kept below5s, in order to fulfill the relative pointing requirements.

It is the conclusion of this project that the preliminary goals of the project have been
met. The proposed estimators have proven to be well within the requirements of the
ACS controller. The SIMULINK implementations of sensor models and Kalman filters
may contribute to the ACS simulation, used for the verification of the Rømer ACS.
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Appendix A
Quaternions

This chapter is a brief description of the quaternions and their algebra. It is based
on [Wertz, 1978], and modified to the notation used in this project.

Quaternions is one of many ways to represent attitude. The quaternion has the advantage
of being without singularities for all attitudes.

A quaternionq is defined by its four vector elementsq1, q2, q3 andq4, as

q = q4 + iq1 + jq2 + kq3 =

2
664
q1
q2
q3
q4

3
775 (A.1)

wherei, j andk are hyper imaginary numbers satisfying

i2 = j2 = k2 = �1 (A.2)

ij = �ji = k (A.3)

jk = �kj = i (A.4)

ki = �ik = j (A.5)

The four parameters of a quaternion are subject to the constraint that

q21 + q22 + q23 + q24 = 1 (A.6)
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which means that the quaternion has three degrees of freedom, corresponding to the
minimum set of parameters needed for attitude representation [Wertz, 1978].

The last elementq4 of the quaternionq is named the scalar element, and the 1st, 2nd,
and 3rd the complex elements. The complex part of the quaternion is writtenq1:3, hence
a quaternion may be written

q =

�
q1:3
q4

�
(A.7)

A rotation�� around a unit vectoru, is represented by the quaternion

q =

�
usin

�
��
2

�
cos
�
��
2

� � (A.8)

The complex conjugate of the quaternion is defined as

q� = q4 � iq1 � jq2 � kq3 =

��q1:3
q4

�
(A.9)

Note that

qq� =

2
664
0
0
0
1

3
775 (A.10)

which is the unit quaternion representing the zero rotation, i.e. no rotation.

The product of two quaternionsq andq0 is defined in matrix form as

q00 = q0q =

2
664
q04 q03 �q02 q01
�q03 q04 q01 q02
q02 �q01 q04 q03
�q01 �q02 �q03 q04

3
775
2
664
q1
q2
q3
q4

3
775 (A.11)

Note that the multiplication of quaternions is not commutative, which is also the case
for attitude matrices.
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Representing the attitude ofq by the attitude matrixA (q), the rotation sequence of
Equation A.11, can be written in terms of the associated attitude matrices, as

A (q00) = A (q0)A (q) (A.12)

whereA (q) is given by

A (q) =
�
q24 � jq1:3j2

�
13�3 + 2q1:3q

T
1:3 � 2q4S(q1:3) (A.13)

=

2
4q21 � q22 � q23 + q24 2 [q1q2 + q3q4] 2 [q1q3 � q2q4]

2 [q1q2 � q3q4] �q21 + q22 � q23 + q24 2 [q2q3 + q1q4]
2 [q1q3 + q2q4] 2 [q3q3 � q1q4] �q21 � q22 + q23 + q24

3
5 (A.14)

A.1 Conversion to Euler Angles

The 1-2-3 Euler sequence of pitch�, yaw , and roll�, is given by the attitude matrix

A (�;  ; �) =

2
4 c�c� c�s�s + s�c �c�s�c + s�s 
�s�c� �s�s�s + c�c s�s�c + c�s 

s� �c�s c�c 

3
5 (A.15)

From the above matrix, the Euler angles are found to be

� = atan2

��A2;1 (�;  ; �)

cos(�)
;
A1;1 (�;  ; �)

cos(�)

�
(A.16)

 = atan2

��A3;2 (�;  ; �)

cos(�)
;
A3;3 (�;  ; �)

cos(�)

�
(A.17)

� = atan2(A3;1 (�;  ; �) ; cos(�)) (A.18)

where

cos(�) =
q
A1;1 (�;  ; �)

2 +A2;1 (�;  ; �)
2 (A.19)

Inserting the values of the quaternion attitude matrix representationA (q) of Equation
A.13, yields the conversion from quaternion the 1-2-3 Euler angle sequence, given by
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� = atan2

��2 [q1q2 � q3q4]

cos(�)
;
q21 � q22 � q23 + q24

cos(�)

�
(A.20)

 = atan2

��2 [q3q3 � q1q4]

cos(�)
;
�q21 � q22 + q23 + q24

cos(�)

�
(A.21)

� = atan2(2 [q1q3 + q2q4] ; cos(�)) (A.22)

where

cos(�) =
q
[q21 � q22 � q23 + q24]

2
+ 22 [q1q2 � q3q4]

2 (A.23)



Appendix B
The q-Method

This appendix describes the q-Method used for solving Wahba’s problem. The appendix
has been previously published in [Bhanderi et al., 2000].

The q-Method for attitude determination was developed by Davenport in 1968 and is
based on earlier work done by Wahba [Wertz, 1978]. The algorithm is very popular due
to its speed and efficiency, when given a set ofn � 2 vector observations. The vector
observationeB

j , is the LOS vector given in body system. The following loss function is
minimized

L
�
AB

R

�
=

1

2

kX
j=1

wjjeB
j �AB

Re
R
j j2 (B.1)

wherewj is the weight of thej’th vector observation,eR
j is the LOS vector in the ref-

erence frame andAB
R is the orthonormal rotation matrix, representing the rotation from

reference to body frame, which is sought. This makes the loss function a weighted sum
squared of the difference between the measured and the transformed LOS vectors. To
simplify Wahba’s problem it is necessary to expand it to

L
�
AB

R

�
=

1

2

kX
j=1

wjj
�
eB
j

�T
eB
j +

�
eR
j

�T �
AB

R

�T
AB

Re
R
j � 2

�
eB
j

�T
AB

Re
R
j j

where
�
eB
j

�T
eB
j is constant and

�
AB

R

�T
AB

R is the identity matrix. The loss function,
L
�
AB

R

�
, may then be written as

L
�
AB

R

�
= �

kX
j=1

tT
jA

B
Rsj + constant terms (B.2)
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where the unnormalized vectorstj andsj are defined as

tj =
p
wje

B
j

sj =
p
wje

R
j

The loss function is at a minimum when the following expression is at a maximum.

L0
�
AB

R

�
=

kX
j=1

tT
jA

B
Rsj = tr

�
T TAB

RS
�

(B.3)

where the matricesT andS are defined as

T =
�
t1 jt2 j � � � jtk

�
S =

�
s1 js2 j � � � jsk

�
The maximization ofL0

�
AB

R

�
is complicated since the nine elements ofAB

R are subject
to six constraints [Shuster and Oh, 1981]. It is therefore convenient to expressAB

R in
terms of a quaternionq.

q =

�
q1:3
q4

�
(B.4)

According to Appendix A the rotation matrixAB
R is defined in terms of quaternions as

A (q) =
�
q24 � jq1:3j2

�
13�3 + 2q1:3q

T
1:3 � 2q4S(q1:3) (B.5)

Substituting Equation B.5 into B.3 gives the modified expression for the loss function
[Wertz, 1978, p. 428]

L0 (q) = qTKq (B.6)

whereK is defined as

K =

2
64U � �I

... Z

: : : : : : : : : : : : : :

ZT ... �

3
75 (B.7)

The contained matrices are defined as

U = BT +B

Z =
�
B2;3 � B3;2jB3;1 � B1;3j B1;2 �B2;1

�T
� = tr (B)
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where

B = TST (B.8)

The problem of determining the optimal attitude has been reduced to finding the quater-
nion that maximizes equation B.6. The normalization constraint,qTq = 1, can be taken
into account by using Lagrange multipliers [Wertz, 1978]. A new functiong (q) is
defined

g (q) = qTKq � �qTq (B.9)

where� is the Lagrange multiplier,g (q) is maximized without constraints and� is
chosen to satisfy the normalization constraint.

By differentiating Equation B.9 with respect toqT and setting the result equal to zero,
an eigenvector equation is obtained [Shuster and Oh, 1981]

Kq = �q (B.10)

The optimal quaternion which determines the optimal attitude matrix, in accordance
with Equation B.5, is an eigenvector ofK. Substitution of equation B.10 into equation
B.6 gives

L0 (q) = qTKq = qT�q = � (B.11)

Thus,L0 (q) will be maximized if the optimal quaternion is chosen to be the eigenvector
of K belonging to the largest eigenvalue.
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Appendix C
Linearization of Attitude Equations

In this appendix the attitude dynamic and kinematic equations are linearized around a
working point of the states, previously published in [Bhanderi, 2001]. As a consequence
of linearization, the system description will contain the small signals of the states.

The non-linear system matrixf (x; t) describing the satellite’s rotation, is found by
combining Equations 7.9 and 7.27 to be

f (x; t) =

�
1

2

q

J�1 (�! � J!)
�

(C.1)

where

x =

�
q

!

�
(C.2)

An expression in the linearized form_x = F (t)x is sought. The kinematic and dynamic
equations are linearized separately in the following.

C.1 Kinematic Equation

For the linearization of the kinematic equation, the attitude quaternion of the satelliteq

is written, in terms of a working point�q and small signal~q, as
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q = ~q�q

m
~q = q�q� (C.3)

where�q� is the complex conjugate of�q. Recalling the definition of
 in Equation 7.6 on
page 72 and the definition of quaternion products, the kinematic equation can be written
in terms of a quaternion product, as

_q =
1

2
q
!
q (C.4)

where the quaternionq
!

is defined by

q
!
=

�
!

0

�
(C.5)

Using the chain rule and Equation C.4, the derivative of the small signal attitude quater-
nion of Equation C.3 can be expressed as

_~q = q _�q
�

+ _q�q�

=
1

2
[q (q �!�q)

� + q
!
q�q�]

=
1

2
[�q�q�q �! + q

!
q�q�]

=
1

2
[�~qq �! + q

!
~q] (C.6)

whereq �! is defined as in Equation C.5, where the working point of the angular velocity
�! is inserted. Note that the complex conjugate of a quaternion represents the opposite
rotation. Hence the reverse rotation defined by a sequence of rotations, is the reverse
sequence of each rotation complex conjugated. The complex conjugate ofq �! is simply
�q �!, since the scalar part is zero.

The angular velocity is defined, in terms of a working point�! and small signal~!, as

! = �! + ~! (C.7)
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henceq
!

can be written

q
!
=

�
�! + ~!
0

�
= q �! + q ~! (C.8)

Inserting Equation C.8 in Equation C.6, and recognizing that the associative rule applies
for quaternions, yields

_~q =
1

2
[�~qq �! + q �!~q] +

1

2
q ~!~q (C.9)

A quaternion can be expressed, in terms of a scalar part and a vector part, as

q =

�
q1:3
q4

�
(C.10)

whereq1:3 is a vector containing the 1st, 2nd, and 3rd element ofq, as described in
Appendix A. If ~q is a small rotation,~q4 approaches one and~q1:3 approaches zero.
Hence the quaternion product of the last term in Equation C.9 can be approximated by

q ~!~q =

��S(~!) ~!
�~!T 0

� �
~q1:3
q4

�

=

��S(~!) ~q1:3 + ~!q4
�~!T~q1:3

�
� q ~! (C.11)

whereS(~!) is the cross product matrix function, defined in Equation 7.18 on page 75,
applied on~!. The terms~qq �! andq �!~q of Equation C.9, can be expressed as

~qq �! =

��S(~q1:3) + ~q413�3 ~q1:3
�~qT

1:3 ~q4

� �
�!
0

�

=

��S(~q1:3) �! + ~q4 �!
�~qT

1:3 �!

�
(C.12)
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and

q �!~q =

��S(�!) �!
��!T 0

� �
~q1:3
q4

�

=

��S(�!) ~q1:3 + �!q4
��!T~q1:3

�
(C.13)

(C.14)

Inserting the approximation of Equation C.11 and the results of Equations C.13 and
C.12 in Equation C.9, yields

_~q =

��S( �!)
0

�
~q +

1

2
q ~! (C.15)

which is the sought linearized kinematic equation.

C.2 Dynamic Equation

The dynamic equation is linearized using first order Taylor expansion around the work-
ing point �!. The control torques are disregarded in the linearization. They are con-
sidered when using controller input, and may be added by the termJ�1nctrl, which is
already a linear term.

The derivative of the small signal angular velocity describes the linearized dynamics of
the system, and can be expressed as

_~! � �J�1 d(! � J!)
d!

����
!=�!

~!

= �J�1 d
d!

S(!s)J!s

����
!=�!

~!

= �J�1
�

d
d!

S(!)

����
!=�!

J �! + S(�!)J
d

d!
!

����
!=�!

�
~!

= �J�1
�

d
d!

S(!)J �!

����
!=�!

+
d

d!
S(�!)J!

����
!=�!

�
~!

= J�1
�

d
d!

S(J �!)!

����
!=�!

� d
d!

S(�!)J!

����
!=�!

�
~!

= J�1 [S(J �!)� S(�!)J ] ~! (C.16)
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C.3 Linear Attitude Model

The non-linear system can now be expressed in a linear state space model. However,
observing Equation C.15, it is seen that the scalar elementq4 has zero dynamics. This
is expected, since it can be approximated to one for small angles. The state vector is
reduced to six states being the small signals of the states in the non-linear model, which
is written

x =

�
~q1:3
~!

�
(C.17)

When obtaining the quaternion from the reduced state vector, the scalar element should
be set to one and the result normalized, since this is not ensured by the linearized kine-
matic equation.

The linearized attitude model can now be expressed as

�
_~q1:3
_~!

�
=

��S(�!) 1

2
13�3

03�3 J�1 [S(J �!)� S(�!)J ]

� �
~q1:3
~!

�
(C.18)
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Annex I
Physical Properties of Rømer

Figure I.1 shows the exploded view of Rømer.

Figure I.2 shows the geometry of Rømer.

Figure I.3 shows the geometry of the Sun Protection Lid.

Figure I.4 illustrates the electrical layout of the hardware components on Rømer.

Table I.1 lists the assumed mass properties of Rømer.

Property Value
Spacecraft Mass ms = 83:9kg

CoG wrt. origo (CoM) rCoG =

2
4 0:007
�0:002
0:275

3
5m

Moments of Inertia wrt. CoM JSCB =

2
418:09 0 0

0 18:64 0
0 0 4:28

3
5 kgm2

Table I.1: Assumed mass properties of Rømer, [Bak et al., 2001].
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Figure I.1: Exploded view of Rømer, [DSRI, 2001].
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Figure I.2: Basic geometry of Rømer, [Bak et al., 2001].

Figure I.3: Geometry of the Sun Protection Lid on Rømer, [Bak et al., 2001].
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Figure I.4: Electrical layout of the hardware components on Rømer.



Annex II
NEMO Star Tracker Data Sheet
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Annex III
QRS11Pro Rate Gyro Data Sheet
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